ﻻ يوجد ملخص باللغة العربية
With typical periods of order 10 minutes, the pulsation signatures of ZZ Ceti variables (pulsating hydrogen-atmosphere white dwarf stars) are severely undersampled by long-cadence (29.42 minutes per exposure) K2 observations. Nyquist aliasing renders the intrinsic frequencies ambiguous, stifling precision asteroseismology. We report the discovery of two new ZZ Cetis in long-cadence K2 data: EPIC 210377280 and EPIC 220274129. Guided by 3-4 nights of follow-up, high-speed (<=30 s) photometry from McDonald Observatory, we recover accurate pulsation frequencies for K2 signals that reflected 4-5 times off the Nyquist with the full precision of over 70 days of monitoring (~0.01 muHz). In turn, the K2 observations enable us to select the correct peaks from the alias structure of the ground-based signals caused by gaps in the observations. We identify at least seven independent pulsation modes in the light curves of each of these stars. For EPIC 220274129, we detect three complete sets of rotationally split ell=1 (dipole mode) triplets, which we use to asteroseismically infer the stellar rotation period of 12.7+/-1.3 hr. We also detect two sub-Nyquist K2 signals that are likely combination (difference) frequencies. We attribute our inability to match some of the K2 signals to the ground-based data to changes in pulsation amplitudes between epochs of observation. Model fits to SOAR spectroscopy place both EPIC 210377280 and EPIC 220274129 near the middle of the ZZ Ceti instability strip, with Teff = 11590+/-200 K and 11810+/-210 K, and masses 0.57+/-0.03 Msun and 0.62+/-0.03 Msun, respectively.
During its two-year prime mission, the Transiting Exoplanet Survey Satellite (TESS) is obtaining full-frame images with a regular 30-minute cadence in a sequence of 26 sectors that cover a combined 85% of the sky. While its primary science case is to
Using light curves obtained by the K2 mission, we study the relation between stellar rotation and magnetic activity with special focus on stellar flares. Our sample comprises 56 bright and nearby M dwarfs observed by K2 during campaigns C0-C18 in lon
We present the first results of a dedicated search for pulsating white dwarfs (WDs) in detached white dwarf plus main-sequence binaries. Candidate systems were selected from a catalogue of WD+MS binaries, based on the surface gravities and effective
Context: After the loss of a second reaction wheel the Kepler mission was redesigned as the K2 mission, pointing towards the ecliptic and delivering data for new fields approximately every 80 days. The steady flow of data obtained with a reduced poin
We present a simulation showing that super-Nyquist frequencies may have periodic amplitude and frequency modulations, even if actually stable, in time series sampled like the Kepler data. These modulations are caused by the barycentric time correctio