ترغب بنشر مسار تعليمي؟ اضغط هنا

Amplitude and frequency modulation of super-Nyquist frequency from Kepler photometric sampling

78   0   0.0 ( 0 )
 نشر من قبل Weikai Zong Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simulation showing that super-Nyquist frequencies may have periodic amplitude and frequency modulations, even if actually stable, in time series sampled like the Kepler data. These modulations are caused by the barycentric time correction, which destroys the evenly spaced time measurements, making the Nyquist frequency variable over the spacecraft orbit around the Sun. These modulations can easily be identified in pulsating stars from Keplers photometric data.



قيم البحث

اقرأ أيضاً

118 - S.-X Yi , S.-N. Zhang 2016
The maximum frequency of gravitational waves (GWs) detectable with traditional pulsar timing methods is set by the Nyquist frequency ($f_{rm{Ny}}$) of the observation. Beyond this frequency, GWs leave no temporal-correlated signals; instead, they app ear as white noise in the timing residuals. The variance of the GW-induced white noise is a function of the position of the pulsars relative to the GW source. By observing this unique functional form in the timing data, we propose that we can detect GWs of frequency $>$ $f_{rm{Ny}}$ (super-Nyquist frequency GWs; SNFGWs). We demonstrate the feasibility of the proposed method with simulated timing data. Using a selected dataset from the Parkes Pulsar Timing Array data release 1 and the North American Nanohertz Observatory for Gravitational Waves publicly available datasets, we try to detect the signals from single SNFGW sources. The result is consistent with no GW detection with 65.5% probability. An all-sky map of the sensitivity of the selected pulsar timing array to single SNFGW sources is generated, and the position of the GW source where the selected pulsar timing array is most sensitive to is $lambda_{rm{s}}=-0.82$, $beta_{rm{s}}=-1.03$ (rad); the corresponding minimum GW strain is $h=6.31times10^{-11}$ at $f=1times10^{-5}$ Hz.
The study of young Sun-like stars is of fundamental importance to understand the magnetic activity and rotational evolution of the Sun. Space-borne photometry by the Kepler telescope provides unprecedented datasets to investigate these phenomena in S un-like stars. We present a new analysis of the entire Kepler photometric time series of the moderately young Sun-like star Kepler-17 that is accompanied by a transiting hot Jupiter. We applied a maximum-entropy spot model to the long-cadence out-of-transit photometry of the target to derive maps of the starspot filling factor versus the longitude and the time. These maps are compared to the spots occulted during transits to validate our reconstruction and derive information on the latitudes of the starspots. We find two main active longitudes on the photosphere of Kepler-17, one of which has a lifetime of at least $sim 1400$ days, although with a varying level of activity. The latitudinal differential rotation is of solar type, that is, with the equator rotating faster than the poles. We estimate a minimum relative amplitude $Delta Omega/ Omega$ between $sim 0.08 pm 0.05$ and $0.14 pm 0.05$, our determination being affected by the finite lifetime of individual starspots and depending on the adopted spot model parameters. We find marginal evidence of a short-term intermittent activity cycle of $sim 48$ days and an indication of a longer cycle of $400-600$ days characterized by an equatorward migration of the mean latitude of the spots as in the Sun. The rotation of Kepler-17 is likely to be significantly affected by the tides raised by its massive close-by planet. We confirm the reliability of maximum-entropy spot models to map starspots in young active stars and characterize the activity and differential rotation of this young Sun-like planetary host.
Amongst the intermediate mass pulsating stars known as $delta$ Sct stars is a subset of high-amplitude and predominantly radial-mode pulsators known as high-amplitude $delta$ Sct (HADS) stars. From more than 2000 $delta$ Sct stars observed by the Kep ler space mission, only two HADS stars were detected. We investigate the more perplexing of these two HADS stars, KIC5950759. We study its variability using ground- and space-based photometry, determine its atmospheric parameters from spectroscopy and perform asteroseismic modelling to constrain its mass and evolutionary stage. From spectroscopy, we find that KIC5950759 is a metal-poor star, which is in agreement with the inferred metallicity needed to reproduce its pulsation mode frequencies from non-adiabatic pulsation models. Furthermore, we combine ground-based WASP and Kepler space photometry, and measure a linear change in period of order $dot{P}/P simeq 10^{-6}$ yr$^{-1}$ for both the fundamental and first overtone radial modes across a time base of several years, which is at least two orders of magnitude larger than predicted by evolution models, and is the largest measured period change in a $delta$ Sct star to date. Our analysis indicates that KIC5950759 is a metal-poor HADS star near the short-lived contraction phase and the terminal-age main sequence, with its sub-solar metallicity making it a candidate SX Phe star. KIC5950759 is a unique object amongst the thousands of known $delta$ Sct stars and warrants further study to ascertain why its pulsation modes are evolving remarkably faster than predicted by stellar evolution.
The Kepler space telescope yielded unprecedented data for the study of solar-like oscillations in other stars. The large samples of multi-year observations posed an enormous data analysis challenge that has only recently been surmounted. Asteroseismi c modeling has become more sophisticated over time, with better methods gradually developing alongside the extended observations and improved data analysis techniques. We apply the latest version of the Asteroseismic Modeling Portal (AMP) to the full-length Kepler data sets for 57 stars and the Sun, comprising planetary hosts, binaries, solar-analogs, and active stars. From an analysis of the derived stellar properties for the full sample, we identify a variation of the mixing-length parameter with atmospheric properties. We also derive a linear relation between the stellar age and a characteristic frequency separation ratio. In addition, we find that the empirical correction for surface effects suggested by Kjeldsen and coworkers is adequate for solar-type stars that are not much hotter (Teff < 6200 K) or significantly more evolved (logg > 4.2, <Delta_nu> > 80 muHz) than the Sun. Precise parallaxes from the Gaia mission and future observations from TESS and PLATO promise to improve the reliability of stellar properties derived from asteroseismology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا