ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying the Estimation Error of Principal Components

333   0   0.0 ( 0 )
 نشر من قبل J\\\"uri Lember
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Principal component analysis is an important pattern recognition and dimensionality reduction tool in many applications. Principal components are computed as eigenvectors of a maximum likelihood covariance $widehat{Sigma}$ that approximates a population covariance $Sigma$, and these eigenvectors are often used to extract structural information about the variables (or attributes) of the studied population. Since PCA is based on the eigendecomposition of the proxy covariance $widehat{Sigma}$ rather than the ground-truth $Sigma$, it is important to understand the approximation error in each individual eigenvector as a function of the number of available samples. The recent results of Kolchinskii and Lounici yield such bounds. In the present paper we sharpen these bounds and show that eigenvectors can often be reconstructed to a required accuracy from a sample of strictly smaller size order.

قيم البحث

اقرأ أيضاً

We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_1,dots, X_n$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma.$ The complexity of the problem is characterized by its effective rank ${bf r}(Sigma):= frac{{rm tr}(Sigma)}{|Sigma|},$ where ${rm tr}(Sigma)$ denotes the trace of $Sigma$ and $|Sigma|$ denotes its operator norm. We develop a method of bias reduction in the problem of estimation of linear functionals of eigenvectors of $Sigma.$ Under the assumption that ${bf r}(Sigma)=o(n),$ we establish the asymptotic normality and asymptotic properties of the risk of the resulting estimators and prove matching minimax lower bounds, showing their semi-parametric optimality.
In this paper, we study the asymptotic behavior of the extreme eigenvalues and eigenvectors of the high dimensional spiked sample covariance matrices, in the supercritical case when a reliable detection of spikes is possible. Especially, we derive th e joint distribution of the extreme eigenvalues and the generalized components of the associated eigenvectors, i.e., the projections of the eigenvectors onto arbitrary given direction, assuming that the dimension and sample size are comparably large. In general, the joint distribution is given in terms of linear combinations of finitely many Gaussian and Chi-square variables, with parameters depending on the projection direction and the spikes. Our assumption on the spikes is fully general. First, the strengths of spikes are only required to be slightly above the critical threshold and no upper bound on the strengths is needed. Second, multiple spikes, i.e., spikes with the same strength, are allowed. Third, no structural assumption is imposed on the spikes. Thanks to the general setting, we can then apply the results to various high dimensional statistical hypothesis testing problems involving both the eigenvalues and eigenvectors. Specifically, we propose accurate and powerful statistics to conduct hypothesis testing on the principal components. These statistics are data-dependent and adaptive to the underlying true spikes. Numerical simulations also confirm the accuracy and powerfulness of our proposed statistics and illustrate significantly better performance compared to the existing methods in the literature. Especially, our methods are accurate and powerful even when either the spikes are small or the dimension is large.
132 - Martin Wahl 2018
We analyse the prediction error of principal component regression (PCR) and prove non-asymptotic upper bounds for the corresponding squared risk. Under mild assumptions, we show that PCR performs as well as the oracle method obtained by replacing emp irical principal components by their population counterparts. Our approach relies on upper bounds for the excess risk of principal component analysis.
Two existing approaches to functional principal components analysis (FPCA) are due to Rice and Silverman (1991) and Silverman (1996), both based on maximizing variance but introducing penalization in different ways. In this article we propose an alte rnative approach to FPCA using penalized rank one approximation to the data matrix. Our contributions are four-fold: (1) by considering invariance under scale transformation of the measurements, the new formulation sheds light on how regularization should be performed for FPCA and suggests an efficient power algorithm for computation; (2) it naturally incorporates spline smoothing of discretized functional data; (3) the connection with smoothing splines also facilitates construction of cross-validation or generalized cross-validation criteria for smoothing parameter selection that allows efficient computation; (4) different smoothing parameters are permitted for different FPCs. The methodology is illustrated with a real data example and a simulation.
Fan et al. [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{47}$(6) (2019) 3009-3031] proposed a distributed principal component analysis (PCA) algorithm to significantly reduce the communication cost between multiple servers. In this pape r, we robustify their distributed algorithm by using robust covariance matrix estimators respectively proposed by Minsker [$mathit{Annals}$ $mathit{of}$ $mathit{Statistics}$ $textbf{46}$(6A) (2018) 2871-2903] and Ke et al. [$mathit{Statistical}$ $mathit{Science}$ $textbf{34}$(3) (2019) 454-471] instead of the sample covariance matrix. We extend the deviation bound of robust covariance estimators with bounded fourth moments to the case of the heavy-tailed distribution under only bounded $2+epsilon$ moments assumption. The theoretical results show that after the shrinkage or truncation treatment for the sample covariance matrix, the statistical error rate of the final estimator produced by the robust algorithm is the same as that of sub-Gaussian tails, when $epsilon geq 2$ and the sampling distribution is symmetric innovation. While $2 > epsilon >0$, the rate with respect to the sample size of each server is slower than that of the bounded fourth moment assumption. Extensive numerical results support the theoretical analysis, and indicate that the algorithm performs better than the original distributed algorithm and is robust to heavy-tailed data and outliers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا