ﻻ يوجد ملخص باللغة العربية
Two existing approaches to functional principal components analysis (FPCA) are due to Rice and Silverman (1991) and Silverman (1996), both based on maximizing variance but introducing penalization in different ways. In this article we propose an alternative approach to FPCA using penalized rank one approximation to the data matrix. Our contributions are four-fold: (1) by considering invariance under scale transformation of the measurements, the new formulation sheds light on how regularization should be performed for FPCA and suggests an efficient power algorithm for computation; (2) it naturally incorporates spline smoothing of discretized functional data; (3) the connection with smoothing splines also facilitates construction of cross-validation or generalized cross-validation criteria for smoothing parameter selection that allows efficient computation; (4) different smoothing parameters are permitted for different FPCs. The methodology is illustrated with a real data example and a simulation.
Functional data analysis on nonlinear manifolds has drawn recent interest. Sphere-valued functional data, which are encountered for example as movement trajectories on the surface of the earth, are an important special case. We consider an intrinsic
Principal component analysis is an important pattern recognition and dimensionality reduction tool in many applications. Principal components are computed as eigenvectors of a maximum likelihood covariance $widehat{Sigma}$ that approximates a populat
Functional principal components analysis is a popular tool for inference on functional data. Standard approaches rely on an eigendecomposition of a smoothed covariance surface in order to extract the orthonormal functions representing the major modes
We study principal component analysis (PCA) for mean zero i.i.d. Gaussian observations $X_1,dots, X_n$ in a separable Hilbert space $mathbb{H}$ with unknown covariance operator $Sigma.$ The complexity of the problem is characterized by its effective
In this paper, we study the asymptotic behavior of the extreme eigenvalues and eigenvectors of the high dimensional spiked sample covariance matrices, in the supercritical case when a reliable detection of spikes is possible. Especially, we derive th