ترغب بنشر مسار تعليمي؟ اضغط هنا

Abrupt phase change of the core rotation in the 143 Sm nucleus

53   0   0.0 ( 0 )
 نشر من قبل Subhendu Rajbanshi Mr
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Dipole sequences in the 143 Sm nucleus have been investigated via the 124 Sn ( 24 Mg, 5n) reaction at E lab = 107 MeV using the Indian National Gamma Array (INGA). The spin-parity of the associated levels have been firmly established from the spectroscopic measurement. Level lifetimes of several levels in the dipole bands have been measured using the Doppler Shift Attenuation Method. The decreasing trend of the measured B(M1) and B(E2) transition strengths in one of the sequence (DB I) spells out its origin as Magnetic Rotation (MR). The trends of B(M1) and B(E2) in DB I are reproduced well in the theoretical calculations using the Shears mechanism with the Principal Axis Cranking (SPAC) model. However, the calculations fail to reproduce the sharp rise in the B(M1)/B(E2) ratio at the highest spins in DB I and the same has been interpreted from the decreasing of the core rotation along the sequence. The experimental observations along with the the theoretical calculations for the second dipole band (DB II), indicate that the core rotation, rather than the shears mechanism, is being favored for angular momentum generation. This represents a unique observation of forking of the shears band DB I from an abrupt phase change of the core from spherical into the deformed one.


قيم البحث

اقرأ أيضاً

77 - Sajad Ali , S. Rajbanshi , B. Das 2017
The present work reported a conclusive evidence for anti-magnetic rotational (AMR) band in an odd-odd nucleus 142Eu. Parity of the states of a quadrupole sequence in 142Eu was firmly identified from polarization measurements using the Indian National Gamma Array and lifetimes of some of the states in the same structure were measured using the Doppler shift attenuation method. The decreasing trends of the deduced quadrupole transition strength B(E2) with spin, along with increasing J(2) / B(E2) values conclusively established the origin of these states as arising from Antimagnetic rotation. The results were well reproduced by numerical calculations within the framework of a semi-classical geometric model.
The neutron-rich $^{213}$Pb isotope was produced in the fragmentation of a primary 1 GeV $A$ $^{238}$U beam, separated in FRS in mass and atomic number, and then implanted for isomer decay $gamma$-ray spectroscopy with the RISING setup at GSI. A newl y observed isomer and its measured decay properties indicate that states in $^{213}$Pb are characterized by the seniority quantum number that counts the nucleons not in pairs coupled to angular momentum $J=0$. The conservation of seniority is a consequence of the Berry phase associated with particle-hole conjugation, which becomes gauge invariant and therefore observable in semi-magic nuclei where nucleons half-fill the valence shell. The $gamma$-ray spectroscopic observables in $^{213}$Pb are thus found to be driven by two mechanisms, particle-hole conjugation and seniority conservation, which are intertwined through the Berry phase.
441 - G. Bocchi , S. Leoni , B. Fornal 2016
The gamma-ray decay of excited states of the one-valence-proton nucleus 133Sb has been studied using cold-neutron induced fission of 235U and 241Pu targets, during the EXILL campaign at the ILL reactor in Grenoble. By using a highly efficient HPGe ar ray, coincidences between gamma-rays prompt with the fission event and those delayed up to several tens of microseconds were investigated, allowing to observe, for the first time, high-spin excited states above the 16.6 micros isomer. Lifetimes analysis, performed by fast-timing techniques with LaBr3(Ce) scintillators, reveals a difference of almost two orders of magnitude in B(M1) strength for transitions between positive-parity medium-spin yrast states. The data are interpreted by a newly developed microscopic model which takes into account couplings between core excitations (both collective and non-collective) of the doubly magic nucleus 132Sn and the valence proton, using the Skyrme effective interaction in a consistent way. The results point to a fast change in the nature of particle-core excitations with increasing spin.
A highly-deformed rotational band has been identified in the N=Z nucleus 36Ar. At high spin the band is observed to its presumed termination at I=16+, while at low spin it has been firmly linked to previously known states in 36Ar. Spins, parities, an d absolute excitation energies have thus been determined throughout the band. Lifetime measurements establish a large low-spin quadrupole deformation (beta_2=0.46+-0.03) and indicate a decreasing collectivity as the band termination is approached. With effectively complete spectroscopic information and a valence space large enough for significant collectivity to develop, yet small enough to be meaningfully approached from the shell model perspective, this rotational band in 36Ar provides many exciting opportunities to test and compare complementary models of collective motion in nuclei.
151 - V. A. Bondarenko 2001
Two-step cascades from the 192Os(n th,gamma)193Os reaction were studied in gamma-gamma coincidence measurement. The decay scheme of 193Os was established up to the excitation energy ~3 MeV. The excitation spectrum of intermediate levels of most intense cascades was found to be practically harmonic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا