ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Rotation of the N=Z Nucleus 36Ar

193   0   0.0 ( 0 )
 نشر من قبل Jacek Dobaczewski
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A highly-deformed rotational band has been identified in the N=Z nucleus 36Ar. At high spin the band is observed to its presumed termination at I=16+, while at low spin it has been firmly linked to previously known states in 36Ar. Spins, parities, and absolute excitation energies have thus been determined throughout the band. Lifetime measurements establish a large low-spin quadrupole deformation (beta_2=0.46+-0.03) and indicate a decreasing collectivity as the band termination is approached. With effectively complete spectroscopic information and a valence space large enough for significant collectivity to develop, yet small enough to be meaningfully approached from the shell model perspective, this rotational band in 36Ar provides many exciting opportunities to test and compare complementary models of collective motion in nuclei.

قيم البحث

اقرأ أيضاً

73 - Peter Mohr 2020
The yrast band in the heavy $N = Z$ nucleus $^{88}$Ru is studied in the framework of the $alpha$-cluster model in combination with double-folding potentials. It is found that the excitation energies of the yrast band in $^{88}$Ru can be nicely descri bed within the $alpha$-cluster approach using a smooth and mildly $L$-dependent adjustment of the potential strength. This result is similar to well-established $alpha$-cluster states in nuclei with a (magic core $otimes$ $alpha$) structure. Contrary, the yrast bands in neighboring $N e Z$ nuclei deviate from such a typical $alpha$-cluster behavior. Finally, the $alpha$-cluster model predicts reduced transition strengths of about 10 Weisskopf units for intraband transitions between low-lying states in the yrast band of $^{88}$Ru.
It has been debated whether the experimentally-identified superdeformed rotational band in $^{40}$Ar [E. Ideguchi, et al., Phys. Lett. B 686 (2010) 18] has an axially or triaxially deformed shape. Projected shell model calculations with angular-momen tum-projection using an axially-deformed basis are performed up to high spins. Our calculated energy levels indicate a perfect collective-rotor behavior for the superdeformed yrast band. However, detailed analysis of the wave functions reveals that the high-spin structure is dominated by mixed 0-, 2-, and 4-quasiparticle configurations. The calculated electric quadrupole transition probabilities reproduce well the known experimental data and suggest a reduced, but still significant, collectivity in the high spin region. The deduced triaxial deformation parameters are small throughout the entire band, suggesting that triaxiality is not very important for this superdeformed band.
66 - E. Nacher , A. Algora , B. Rubio 2004
A novel method of deducing the deformation of the N=Z nucleus 76Sr is presented. It is based on the comparison of the experimental Gamow-Teller strength distribution B(GT) from its beta decay with the results of QRPA calculations. This method confirm s previous indications of the strong prolate deformation of this nucleus in a totally independent way. The measurement has been carried out with a large Total Absorption gamma Spectrometer, Lucrecia, newly installed at CERN-ISOLDE.
57 - P. Papka , C. Beck , F. Haas 2003
The N = Z 44Ti* nucleus has been populated in Fusion Evaporation process at very high excitation energies and angular momenta using two entrance channels with different mass-asymmetry. The deformation effects in the rapidly rotating nuclei have been investigated through the energy distribution of the alpha-particle combined to statistical-model calculations. In the case of low-multiplicity events, the ratio between first particle emitted has been measured and shows significant disagreement with the predictions of the statistical-model. This may explain The large discrepancies observed in proton energy spectra measured in previous experiments performed in the same mass region.
High spin states in the odd-odd N=Z nucleus 46V have been identified. At low spin, the T=1 isobaric analogue states of 46Ti are established up to I = 6+. Other high spin states, including the band terminating state, are tentatively assigned to the sa me T=1 band. The T=0 band built on the low-lying 3+ isomer is observed up to the 1f7/2-shell termination at I=15. Both signatures of a negative parity T=0 band are observed up to the terminating states at I = 16- and I = 17-, respectively. The structure of this band is interpreted as a particle-hole excitation from the 1d3/2 shell. Spherical shell model calculations are found to be in excellent agreement with the experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا