ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of 1/f noise on the dissipative dynamics of an LC-shunted qubit

375   0   0.0 ( 0 )
 نشر من قبل Fedir Vasko T
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. T. Vasko




اسأل ChatGPT حول البحث

We consider dissipative dynamics of a flux qubit caused by 1/f noises, which act both on the shunting LC-contour and on the SQUID loop. These classical Gaussian noises modulate of the level splitting and of the tunnel coupling, respectively, and they are partially correlated. The transient evolution of qubit has been studied for the regimes: (a) the interwell incoherent tunneling, (b) the relaxation of interlevel population, and (c) the decoherence of the off-diagonal part of a density matrix. For all regimes, the relaxation rates and the frequency renormalization [for the case (c)] are analyzed versus the parameters of qubit and couplings to the noises applied. The fluctuation effects give a dominant contribution at tails of relaxation, so that the averaged dissipative dynamics is not valid there. The results obtained open a way for verification of the parameters of qubit-noise interaction and for minimization of coupling between qubit and environment. Under typical level of noises, the results are comparable to the recent experimental data on the population relaxation and on the incoherent interwell tunneling.



قيم البحث

اقرأ أيضاً

We have investigated decoherence in Josephson-junction flux qubits. Based on the measurements of decoherence at various bias conditions, we discriminate contributions of different noise sources. In particular, we present a Gaussian decay function of the echo signal as evidence of dephasing due to $1/f$ flux noise whose spectral density is evaluated to be about $(10^{-6} Phi_0)^2$/Hz at 1 Hz. We also demonstrate that at an optimal bias condition where the noise sources are well decoupled the coherence observed in the echo measurement is mainly limited by energy relaxation of the qubit.
The efficiency of the future devices for quantum information processing will be limited mostly by the finite decoherence rates of the individual qubits and quantum gates. Recently, substantial progress was achieved in enhancing the time within which a solid-state qubit demonstrates coherent dynamics. This progress is based mostly on a successful isolation of the qubits from external decoherence sources obtained by clever engineering. Under these conditions, the material-inherent sources of noise start to play a crucial role. In most cases, quantum devices are affected by noise decreasing with frequency, f, approximately as 1/f. According to the present point of view, such noise is due to material- and device-specific microscopic degrees of freedom interacting with quantum variables of the nanodevice. The simplest picture is that the environment that destroys the phase coherence of the device can be thought of as a system of two-state fluctuators, which experience random hops between their states. If the hopping times are distributed in a exponentially broad domain, the resulting fluctuations have a spectrum close to 1/f in a large frequency range. In this paper we review the current state of the theory of decoherence due to degrees of freedom producing 1/f noise. We discuss basic mechanisms of such noises in various nanodevices and then review several models describing the interaction of the noise sources with quantum devices. The main focus of the review is to analyze how the 1/f noise destroys their coherent operation. We start from individual qubits concentrating mostly on the devices based on superconductor circuits, and then discuss some special issues related to more complicated architectures. Finally, we consider several strategies for minimizing the noise-induced decoherence.
Short ballistic graphene Josephson junctions sustain superconducting current with a non-sinusoidal current-phase relation up to a critical current threshold. The current-phase relation, arising from proximitized superconductivity, is gate-voltage tun able and exhibits peculiar skewness observed in high quality graphene superconductors heterostructures with clean interfaces. These properties make graphene Josephson junctions promising sensitive quantum probes of microscopic fluctuations underlying transport in two-dimensions. We show that the power spectrum of the critical current fluctuations has a characteristic $1/f$ dependence on frequency, $f$, probing two points and higher correlations of carrier density fluctuations of the graphene channel induced by carrier traps in the nearby substrate. Tunability with the Fermi level, close to and far from the charge neutrality point, and temperature dependence of the noise amplitude are clear fingerprints of the underlying material-inherent processes. Our results suggest a roadmap for the analysis of decoherence sources in the implementation of coherent devices by hybrid nanostructures.
161 - M. Hays , V. Fatemi , D. Bouman 2021
Two promising architectures for solid-state quantum information processing are electron spins in semiconductor quantum dots and the collective electromagnetic modes of superconducting circuits. In some aspects, these two platforms are dual to one ano ther: superconducting qubits are more easily coupled but are relatively large among quantum devices $(simmathrm{mm})$, while electrostatically-confined electron spins are spatially compact ($sim mathrm{mu m}$) but more complex to link. Here we combine beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We demonstrate coherent spin manipulation by combining single-shot circuit-QED readout and spin-flipping Raman transitions, finding a spin-flip time $T_S = 17~mathrm{mu s}$ and a spin coherence time $T_{2E}=52~mathrm{ns}$. These results herald a new spin qubit with supercurrent-based circuit-QED integration and further our understanding and control of Andreev levels -- the parent states of Majorana zero modes -- in semiconductor-superconductor heterostructures.
We have studied the dephasing of a superconducting flux-qubit coupled to a DC-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of suc h a controllable and well-characterized environment on the qubit coherence. We can quantitatively account for our data with a simple model in which thermal fluctuations of the photon number in the oscillator are the limiting factor. In particular, we observe a strong reduction of the dephasing rate whenever the coupling is tuned to zero. At the optimal point we find a large spin-echo decay time of $4 mu s$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا