ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective spin waves in arrays of Permalloy nanowires with single-side periodically modulated width

47   0   0.0 ( 0 )
 نشر من قبل Gianluca Gubbiotti
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have experimentally and numerically investigated the dispersion of collective spin waves prop-agating through arrays of longitudinally magnetized nanowires with periodically modulated width. Two nanowire arrays with single-side modulation and different periodicity of modulation were studied and compared to the nanowires with homogeneous width. The spin-wave dispersion, meas-ured up to the third Brillouin zone of the reciprocal space, revealed the presence of two dispersive modes for the width-modulated NWs, whose amplitude of magnonic band depends on the modula-tion periodicity, and a set of nondispersive modes at higher frequency. These findings are different from those observed in homogeneous width NWs where only the lowest mode exhibits sizeable dis-persion. The measured spin-wave dispersion has been satisfactorily reproduced by means of dynam-ical matrix method. Results presented in this work are important in view of the possible realization of frequency tunable magnonic device.



قيم البحث

اقرأ أيضاً

Antisymmetric exchange interactions lead to non-reciprocal spin-wave propagation. As a result, spin waves confined in a nanostructure are not standing waves; they have a time-dependent phase, because counter-propagating waves of the same frequency ha ve different wave lengths. We report on a Brillouin light scattering (BLS) study of confined spin waves in Co/Pt nanowires with strong Dzyaloshinskii Moriya interactions (DMI). Spin-wave quantization in narrow (<200 nm width) wires dramatically reduces the frequency shift between BLS Stokes and anti-Stokes lines associated with the scattering of light incident transverse to the nanowires. In contrast, the BLS frequency shift associated with the scattering of spin waves propagating along the nanowire length is independent of nanowire width. A model that considers phase-modulated confined modes captures this physics and predicts a dramatic reduction in frequency shift of light scattered from higher energy spin waves in narrow wires, which is confirmed by our experiments.
The change in electrical resistance associated with the application of an external magnetic field is known as the magnetoresistance (MR). The measured MR is quite complex in the class of connected networks of single-domain ferromagnetic nanowires, kn own as artificial spin ice, due to the geometrically-induced collective behavior of the nanowire moments. We have conducted a thorough experimental study of the MR of a connected honeycomb artificial spin ice, and we present a simulation methodology for understanding the detailed behavior of this complex correlated magnetic system. Our results demonstrate that the behavior, even at low magnetic fields, can be well-described only by including significant contributions from the vertices at which the legs meet, opening the door to new geometrically-induced MR phenomena.
62 - B. P. van Zyl , , E. Zaremba 2000
Motivated by the recent experiment of Hochgraefe et al., we have investigated the magnetoplasmon excitations in a periodic array of quantum wires with a periodic modulation along the wire direction. The equilibrium and dynamic properties of the syste m are treated self-consistently within the Thomas-Fermi-Dirac-von Weizsaecker approximation. A calculation of the dynamical response of the system to a far-infrared radiation field reveals a resonant anticrossing between the Kohn mode and a finite-wavevector longitudinal excitation which is induced by the density modulation along the wires. Our theoretical calculations are found to be in excellent agreement with experiment.
We study theoretically the in-plane electromagnetic response and the exciton-plasmon interactions for an experimentally feasible carbon nanotube (CN) film systems composed of parallel aligned periodic semiconducting CN arrays embedded in an ultrathin finite-thickness dielectric. For homogeneous single-CN films, the intertube coupling and thermal broadening bring the exciton and interband plasmon resonances closer together. They can even overlap due to the inhomogeneous broadening for films composed of array mixtures with a slight CN diameter distribution. In such systems the real part of the response function is negative for a broad range of energies (negative refraction band), and the CN film behaves as a hyperbolic metamaterial. We also show that for a properly fabricated two-component CN film, by varying the relative weights of the two constituent CN array components one can tune the optical absorption profile to make the film transmit or absorb light in the neighborhood of an exciton absorption resonance on-demand.
161 - Andrey A. Nikitin 2015
An electric current controlled spin-wave logic gate based on a width-modulated dynamic magnonic crystal is realized. The device utilizes a spin-wave waveguide fabricated from a single-crystal Yttrium Iron Garnet film and two conducting wires attached to the film surface. Application of electric currents to the wires provides a means for dynamic control of the effective geometry of the waveguide and results in a suppression of the magnonic band gap. The performance of the magnonic crystal as an AND logic gate is demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا