ترغب بنشر مسار تعليمي؟ اضغط هنا

Controlled Exciton-Plasmon Coupling in a Mixture of Ultrathin Periodically Aligned Single-Wall Carbon Nanotube Arrays

112   0   0.0 ( 0 )
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically the in-plane electromagnetic response and the exciton-plasmon interactions for an experimentally feasible carbon nanotube (CN) film systems composed of parallel aligned periodic semiconducting CN arrays embedded in an ultrathin finite-thickness dielectric. For homogeneous single-CN films, the intertube coupling and thermal broadening bring the exciton and interband plasmon resonances closer together. They can even overlap due to the inhomogeneous broadening for films composed of array mixtures with a slight CN diameter distribution. In such systems the real part of the response function is negative for a broad range of energies (negative refraction band), and the CN film behaves as a hyperbolic metamaterial. We also show that for a properly fabricated two-component CN film, by varying the relative weights of the two constituent CN array components one can tune the optical absorption profile to make the film transmit or absorb light in the neighborhood of an exciton absorption resonance on-demand.

قيم البحث

اقرأ أيضاً

We study theoretically the interactions of excitonic states with surface electromagnetic modes of small-diameter (~1 nm) semiconducting single-walled carbon nanotubes. We show that these interactions can result in strong exciton-surface-plasmon coupl ing. The exciton absorption lineshapes exhibit the line (Rabi) splitting $~0.1-0.3$ eV as the exciton energy is tuned to the nearest interband surface plasmon resonance of the nanotube. We expect this effect to open a path to new optoelectronic device applications of semiconducting carbon nanotubes.
Feedstock and byproduct diffusion in the root growth of aligned CNT arrays was discussed in this work. A non-dimensional modulus was proposed to differentiate catalyst-decay controlled growth deceleration from diffusion controlled one. It was found t hat aligned MWNT arrays are usually free of feedstock diffusion while SWNT arrays are usually facing strong diffusion limit. The present method can also be utilized to predict the maximum length that CNT forest can grow in certain CVD process.
We have reproducibly contacted gated single wall carbon nanotubes (SWCNT) to superconducting leads based on niobium. The devices are identified to belong to two transparency regimes: The Coulomb blockade and the Kondo regime. Clear signature of the s uperconducting leads is observed in both regimes and in the Kondo regime a narrow zero bias peak interpreted as a proximity induced supercurrent persist in Coulomb blockade diamonds with Kondo resonances.
We observe current rectification in a molecular diode consisting of a semiconducting single-wall carbon nanotube and an impurity. One half of the nanotube has no impurity, and it has a current-voltage (I-V) charcteristic of a typical semiconducting n anotube. The other half of the nanotube has the impurity on it, and its I-V characteristic is that of a diode. Current in the nanotube diode is carried by holes transported through the molecules one-dimensional subbands. At 77 Kelvin we observe a step-wise increase in the current through the diode as a function of gate voltage, showing that we can control the number of occupied one-dimensional subbands through electrostatic doping.
A top-gated single wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double and triple quantum dot stability diagrams. Simulations using a capacitor model including tunnel coupling between neighboring dots captures the observed behavior with good agreement. Furthermore, anti-crossings between indirectly coupled levels and higher order cotunneling are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا