ﻻ يوجد ملخص باللغة العربية
We demonstrate a monolithic III-V photonic circuit combining a heralded single photon source with a beamsplitter, at room temperature and telecom wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates counterpropagating photons, one of which is used to herald the injection of its twin into the beamsplitter. We use this configuration to implement an integrated Hanbury-Brown and Twiss experiment, yielding a heralded second-order correlation $g^{(2)}_{rm her}(0)=0.10 pm 0.02$ that confirms single-photon operation. The demonstrated generation and manipulation of quantum states on a single III-V semiconductor chip opens promising avenues towards real-world applications in quantum information.
Photonic quantum technologies such as quantum cryptography, photonic quantum metrology, photonic quantum simulators and computers will largely benefit from highly scalable and small footprint quantum photonic circuits. To perform fully on-chip quantu
Many of the envisioned quantum photonic technologies, e.g. a quantum repeater, rely on an energy- (wavelength-) tunable source of polarization entangled photon pairs. The energy tunability is a fundamental requirement to perform two-photon-interferen
Interference between independent single photons is perhaps the most fundamental interaction in quantum optics. It has become increasingly important as a tool for optical quantum information science, as one of the rudimentary quantum operations, toget
Spontaneous parametric down-conversion (SPDC) in a laser pumped optical nonlinear medium can produce heralded single photons with a high purity but a very low yield. Improving the yield by increasing the pump power in SPDC inevitably reduces the puri
Single-photon sources (SPSs) are mainly characterized by the minimum value of their second-order coherence function, viz. their $g^{(2)}$ function. A precise measurement of $g^{(2)}$ may, however, require high time-resolution devices, in whose absenc