ﻻ يوجد ملخص باللغة العربية
Interference between independent single photons is perhaps the most fundamental interaction in quantum optics. It has become increasingly important as a tool for optical quantum information science, as one of the rudimentary quantum operations, together with photon detection, for generating entanglement between non-interacting particles. Despite this, demonstrations of large-scale photonic networks involving more than two independent sources of quantum light have been limited due to the difficulty in constructing large arrays of high-quality single photon sources. Here, we solve the key challenge, reporting a novel array of more than eighteen near-identical, low-loss, high-purity, heralded single photon sources achieved using spontaneous four-wave mixing (SFWM) on a silica chip. We verify source quality through a series of heralded Hong-Ou-Mandel experiments, and further report the experimental three-photon extension of the entire Hong-Ou-Mandel interference curves, which map out the interference landscape between three independent single photon sources for the first time.
We demonstrate a monolithic III-V photonic circuit combining a heralded single photon source with a beamsplitter, at room temperature and telecom wavelength. Pulsed parametric down-conversion in an AlGaAs waveguide generates counterpropagating photon
Quantum technology is playing an increasingly important role due to the intrinsic parallel processing capabilities endorsed by quantum superposition, exceeding upper limits of classical performances in diverse fields. Integrated photonic chip offers
Single-photon sources (SPSs) are mainly characterized by the minimum value of their second-order coherence function, viz. their $g^{(2)}$ function. A precise measurement of $g^{(2)}$ may, however, require high time-resolution devices, in whose absenc
Single photon source represent a fundamental building block for optical implementations of quantum information tasks ranging from basic tests of quantum physics to quantum communication and high-resolution quantum measurement. In this paper we invest
The non-deterministic nature of photon sources is a key limitation for single photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single photon yield without enhancing the output noise. Here the intrinsic statisti