ترغب بنشر مسار تعليمي؟ اضغط هنا

Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

462   0   0.0 ( 0 )
 نشر من قبل Jan-Simon Hennig
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Low mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilising multiple pendulum stages with vertical blade springs and materials with high quality factors provides attenuation of seismic and thermal noise, however damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed but introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimisation for this system.

قيم البحث

اقرأ أيضاً

113 - Y. Akiyama , T. Akutsu , M. Ando 2019
A vibration isolation system called Type-Bp system used for power recycling mirrors has been developed for KAGRA, the interferometric gravitational-wave observatory in Japan. A suspension of the Type-Bp system passively isolates an optic from seismic vibration using three main pendulum stages equipped with two vertical vibration isolation systems. A compact reaction mass around each of the main stages allows for achieving sufficient damping performance with a simple feedback as well as vibration isolation ratio. Three Type-Bp systems were installed in KAGRA, and were proved to satisfy the requirements on the damping performance, and also on estimated residual displacement of the optics.
Rare event search experiments, such as those searching for dark matter and observations of neutrinoless double beta decay, require ultra low levels of radioactive background for unmistakable identification. In order to reduce the radioactive backgrou nds of detectors used in these types of event searches, low background photosensors are required, as the physical size of these detectors become increasing larger, and hence the number of such photosensors used also increases rapidly. Considering that most dark matter and neutrinoless double beta decay experiments are turning towards using noble liquids as the target choice, liquid xenon and liquid argon for instance, photosensors that can work well at cryogenic temperatures are required, 165 K and 87 K for liquid xenon and liquid argon, respectively. The Silicon Geiger Hybrid Tube (SiGHT) is a novel photosensor designed specifically for use in ultra low background experiments operating at cryogenic temperatures. It is based on the proven photocathode plus silicon photomultiplier (SiPM) hybrid technology and consists of very few other, but also ultra radio-pure, materials like fused silica and silicon for the SiPM. The introduction of the SiGHT concept, as well as a feasibility study for its production, is reported in this paper.
We report on the design and the expected performance of a low cost hybrid detection system suitable for operation as an autonomous unit in strong electromagnetic noise environments. The system consists of three particle detectors (scintillator module s) and one or more RF antennas. The particle detector units are used to detect air showers and to supply the trigger to the RF Data acquisition electronics. The hardware of the detector as well as the expected performance in detecting and reconstructing the angular direction for the shower axis is presented. Calibration data are used to trim the simulation parameters and to investigate the response to high energy ($E>10^{15} eV$) extensive air showers.
251 - Shanshan Gao 2019
The Short Baseline Near Detector (SBND) is one of three liquid argon (LAr) neutrino detectors sitting in the Booster Neutrino Beam (BNB) at Fermilab as part of the Short Baseline Neutrino (SBN) program. The detector is in a cryostat holding 260-ton o f LAr and consists of four 2.5 m (L) $times$ 4 m (W) Anode Plane Assembles (APAs) and two Cathode Plane Assemblies (CPAs), which leads to 11,264 Time Projection Chamber (TPC) readout channels and two separate 2 m long drift regions. As an enabling technology, Cold Electronics (CE) developed for cryogenic temperature operation makes possible an optimum balance among various design and performance requirements for such large sized detectors. Brookhaven National Laboratory (BNL) has been leading the R&D and implementation of the entire front-end CE system for LAr TPC readout in collaboration with other SBND institutes. The front-end readout electronics system includes the cold front-end electronics placed close to the wire electrodes, which detects and digitizes the charge signal in LAr, as well as the warm interface electronics placed on the signal feed-through flange outside of the cryostat, which further organizes and transmits the digitized signal to the DAQ system. An extensive study of electronics suitable for 77 K - 300 K, including the custom designed front-end ASIC and commercial components, e.g. ADC and FPGA, has been made to meet requirements such as low noise, low power consumption, high reliability and long lifetime. Furthermore, an integral design concept of APA, CE, feed-through, warm interface electronics with local diagnostics, grounding and isolation rules has been practiced with vertical slice test stands to make projection of the CE performance in the SBND detector.
62 - D. Naito , Y. Maeda , N. Kawasaki 2015
We developed a low-mass and high-efficiency charged particle detector for an experimental study of the rare decay $K_L rightarrow pi^0 u bar{ u}$. The detector is important to suppress the background with charged particles to the level below the sig nal branching ratio predicted by the Standard Model (O(10$^{-11}$)). The detector consists of two layers of 3-mm-thick plastic scintillators with wavelength shifting fibers embedded and Multi Pixel Photon Counters for readout. We manufactured the counter and evaluated the performance such as light yield, timing resolution, and efficiency. With this design, we achieved the inefficiency per layer against penetrating charged particles to be less than $1.5 times 10^{-5}$, which satisfies the requirement of the KOTO experiment determined from simulation studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا