ﻻ يوجد ملخص باللغة العربية
Intra-unit cell magnetic order has been observed in four different families of high-temperature superconductors from polarized neutron diffraction experiments and supported by several other techniques. That order, which does not break translation symmetry, is consistent with the predicted orbital moments generated by two microscopic loop currrents in each CuO$_2$ cell. Recently, using polarized neutron diffraction, Croft {it et al} [Phys. Rev. B 96, 214504 (2017)] claim to find no evidence for such orbital loop currents in charge ordered ${rm YBa_2Cu_3O_{6+x}}$. Their experiment is done with detwinned samples at least 100 times smaller than in previous experiments without counting much longer. We show by a detailed quantitative analysis of their data that contrary to their conclusion, the magnetic signal falls below their threshold of detection. None of the data reported by Croft {it et al} challenge the universality of the intra-unit cell order in cuprates.
It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding
We report a polarized neutron scattering study of the orbital-like magnetic order in strongly underdoped ${rm YBa_2Cu_3O_{6.45}}$ and ${rm YBa_2(Cu_{0.98}Zn_{0.02})_3O_{6.6}}$. Their hole doping levels are located on both sides of the critical doping
Static charge-density wave (CDW) and spin-density wave (SDW) order has been convincingly observed in La-based cuprates for some time. However, more recently it has been suggested by quantum oscillation, transport and thermodynamic measurements that d
We report novel features in the in-plane magnetoresistance (MR) of heavily underdoped YBa_2Cu_3O_{6+x}, which unveil a developed ``charged stripe structure in this system. One of the striking features is an anisotropy of the MR with a d-wave symmetry
We present local structural evidence supporting the presence of charge inhomogeneities in the CuO2 planes of underdoped La2-xSrxCuO4. High-resolution atomic pair distribution functions have been obtained from neutron powder diffraction data over the