ﻻ يوجد ملخص باللغة العربية
It has been proposed that the pseudogap state of underdoped cuprate superconductors may be due to a transition to a phase which has circulating currents within each unit cell. Here, we use polarized neutron diffraction to search for the corresponding orbital moments in two samples of underdoped YBa$_2$Cu$_3$O$_{6+x}$ with doping levels $p=0.104$ and 0.123. In contrast to some other reports using polarized neutrons, but in agreement with nuclear magnetic resonance and muon spin rotation measurements, we find no evidence for the appearance of magnetic order below 300 K. Thus, our experiment suggests that such order is not an intrinsic property of high-quality cuprate superconductor single crystals. Our results provide an upper bound for a possible orbital loop moment which depends on the pattern of currents within the unit cell. For example, for the CC-$theta_{II}$ pattern proposed by Varma, we find that the ordered moment per current loop is less than 0.013 $mu_B$ for $p=0.104$.
Intra-unit cell magnetic order has been observed in four different families of high-temperature superconductors from polarized neutron diffraction experiments and supported by several other techniques. That order, which does not break translation sym
Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal
We present local optical measurements of thermal diffusivity in the $ab$ plane of underdoped YBCO crystals. We find that the diffusivity anisotropy is comparable to reported values of the electrical resistivity anisotropy, suggesting that the anisotr
The application of large magnetic fields ($B sim B_{c2}$) to layered cuprates suppresses their high temperature superconducting behaviour and reveals competing ground states. In the widely-studied material YBa$_2$Cu$_3$O$_{6+x}$ (YBCO), underdoped ($
Observing how electronic states in solids react to a local symmetry breaking provides insight into their microscopic nature. A striking example is the formation of bound states when quasiparticles are scattered off defects. This is known to occur, un