ﻻ يوجد ملخص باللغة العربية
Endovascular sealing is a new technique for the repair of abdominal aortic aneurysms. Commercially available in Europe since~2013, it takes a revolutionary approach to aneurysm repair through minimally invasive techniques. Although aneurysm sealing may be thought as more stable than conventional endovascular stent graft repairs, post-implantation movement of the endoprosthesis has been described, potentially leading to late complications. The paper presents for the first time a model, which explains the nature of forces, in static and dynamic regimes, acting on sealed abdominal aortic aneurysms, with references to real case studies. It is shown that elastic deformation of the aorta and of the endoprosthesis induced by static forces and vibrations during daily activities can potentially promote undesired movements of the endovascular sealing structure.
Thoracic endovascular aortic repair (TEVAR) has become the standard treatment of a variety of aortic pathologies. The objective of this study is to evaluate the hemodynamic effects of stent-graft introducer sheath during TEVAR. Three idealized repres
Thoracic endovascular aortic repair (TEVAR) has developed to be the most effective treatment for aortic diseases. The objective of this study is to evaluate the biomechanical implications of the implanted endograft after TEVAR. We present a novel ima
Presently 4T-1 luc cells were irradiated with proton under ultra-high dose rate FLASH or with gamma-ray with conventional dose rate, and then subcutaneous vaccination with or without Mn immuno-enhancing adjuvant into the mice for three times. One wee
Vehicle safety systems have substantially decreased motor vehicle crash-related injuries and fatalities, but injuries to the lumbar spine still have been reported. Experimental and computational analyses of upright and, particularly, reclined occupan
In its permanent quest of mechanobiological homeostasis, our vascula-ture significantly adapts across multiple length and time scales in various physiological and pathological conditions. Computational modeling of vascular growth and remodeling (G&R)