ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetic resonance of a two-dimensional array of nanomagnets: Effects of surface anisotropy and dipolar interactions

76   0   0.0 ( 0 )
 نشر من قبل Francois Vernay
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop an analytical approach for studying the FMR frequency shift due to dipolar interactions and surface effects in two-dimensional arrays of nanomagnets with (effective) uniaxial anisotropy along the magnetic field. For this we build a general formalism on the basis of perturbation theory that applies to dilute assemblies but which goes beyond the point-dipole approximation as it takes account of the size and shape of the nano-elements, in addition to their separation and spatial arrangement. The contribution to the frequency shift due to the shape and size of the nano-elements has been obtained in terms of their aspect ratio, their separation and the lattice geometry. We have also varied the size of the array itself and compared the results with a semi-analytical model and reached an agreement that improves as the size of the array increases. We find that the red-shift of the ferromagnetic resonance due to dipolar interactions decreases for smaller arrays. Surface effects may induce either a blue-shift or a red-shift of the FMR frequency, depending on the crystal and magnetic properties of the nano-elements themselves. In particular, some configurations of the nano-elements assemblies may lead to a full compensation between surface effects and dipole interactions.

قيم البحث

اقرأ أيضاً

We compute the AC susceptibility of a weakly dipolar-interacting monodisperse assembly of magnetic nanoclusters with oriented anisotropy. For this purpose we first compute the relaxation rate in a longitudinal magnetic field of a single nanomagnet ta king account of both dipolar interactions in the case of dilute assemblies and surface anisotropy. We then study the behavior of the real and imaginary components of the AC susceptibility as functions of temperature, frequency, surface anisotropy and inter-particle interactions. We find that the surface anisotropy induces an upward shift of the temperature at the maximum of the AC susceptibility components and that its effects may be tuned so as to screen out the effects of interactions. The phenomenological Vogel-Fulcher law for the effect of dipolar interaction on the relaxation rate is revisited within our formalism and a semi-analytical expression is given for the effective temperature is given in terms of inter alia the applied field, surface anisotropy and dipolar interaction.
We study the interplay between the effects of surface anisotropy and dipolar interactions in monodisperse assemblies of nanomagnets with oriented anisotropy. We derive asymptotic formulas for the assembly magnetization taking account of temperature, applied field, core and surface anisotropy, and dipolar inter-particle interactions. We find that the interplay between surface anisotropy and dipolar interactions is well described by the analytical expression of the assembly magnetization derived here: the overall sign of the product of the two parameters governing the surface and the dipolar contributions determines whether intrinsic and collective terms compete or have synergistic effects on the magnetization. This is illustrated by the magnetization curves of $gamma-Fe_{2}O_{3}$ nanoparticles assemblies in the low concentration limit.
68 - F. Vernay , H. Kachkachi 2019
There is so far no clear-cut experimental analysis that can determine whether dipole-dipole interactions enhance or reduce the blocking temperature $T_{B}$ of nanoparticle assemblies. It seems that the samples play a central role in the problem and t herefore, their geometry should most likely be the key factor in this issue. Yet, in a previous work, Jonsson and Garcia-Palacios did investigate theoretically this problem in a weak-interaction limit and without the presence of an external DC field. Based on symmetry arguments they reached the conclusion that the variation of the relaxation rate is monotonous. In the presence of an external magnetic field we show that these arguments may no longer hold depending on the experimental geometry. Therefore, the aim of this paper is to evaluate the variation of $T_{B}$ for a model system consisting of a chain of ferromagnetic nanoparticles coupled with long-range dipolar interaction with two different geometries. Rather than addressing a quantitative analysis, we focus on the qualitative variation of $T_{B}$ as a function of the interparticle distance a and of the external field $h$. The two following situations are investigated: a linear chain with a longitudinal axial anisotropy in a longitudinal DC field and a linear chain with a longitudinal axial anisotropy in a transverse field.
The successful isolation of graphene ten years ago has evoked a rapidly growing scientific interest in the nature of two-dimensional (2D) crystals. A number of different 2D crystals has been produced since then, with properties ranging from supercond uctivity to insulating behavior. Here, we predict the possibility for realizing ferromagnetic 2D crystals by exfoliating atomically thin films of K2CuF4. From a first-principles theoretical analysis, we find that single layers of K2CuF4 form exactly 2D Kosterlitz-Thouless systems. The 2D crystal can form a free-standing membrane, and exhibits an experimentally accessible transition temperature and robust magnetic moments of 1 Bohr magneton per formula unit. 2D K2CuF4 unites ferromagnetic and insulating properties and is a demonstration of principles for nanoelectronics such as novel 2D-based heterostructures.
We address the issue of inter-particle dipolar interactions in the context of magnetic hyperthermia. More precisely, the main question dealt with here is concerned with the conditions under which the specific absorption rate is enhanced or reduced by dipolar interactions. For this purpose, we propose a theory for the calculation of the AC susceptibility, and thereby the specific absorption rate, for a monodisperse two-dimensional assembly of nanoparticles with oriented anisotropy, in the presence of a DC magnetic field, in addition to the AC magnetic field. We also study the competition between the dipolar interactions and the DC field, both in the transverse and longitudinal configurations. In both cases, we find that the specific absorption rate has a maximum at some critical DC field that depends on the inter-particle separation. In the longitudinal setup, this critical field falls well within the range of experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا