ﻻ يوجد ملخص باللغة العربية
Periodic (almost monochromatic) gravitational waves emitted by rotating, asymmetric neutron stars are intriguing potential signals in the sensitivity band of Advanced LIGO and Advanced Virgo detectors. These signals are related to elastic and magnetic stresses in the neutron-star interior, as well as to various possible instabilities, and thus are interesting from the point of view of the largely-unknown neutron star structure. I will describe the main challenges related to these searches, the current state of the data-analysis methods and plans for the future.
The field of gravitational-wave astronomy has been opened up by gravitational-wave observations made with interferometric detectors. This review surveys the current state-of-the-art in gravitational-wave detectors and data analysis methods currently
The multi-band template analysis (MBTA) pipeline is a low-latency coincident analysis pipeline for the detection of gravitational waves (GWs) from compact binary coalescences. MBTA runs with a low computational cost, and can identify candidate GW eve
Short, hard gamma-ray bursts (GRBs) are believed to originate from the coalescence of two neutron stars (NSs) or a NS and a black hole (BH). If this scenario is correct, then short GRBs will be accompanied by the emission of strong gravitational wave
The LIGO Scientific Collaboration and Virgo Collaboration have carried out joint searches in LIGO and Virgo data for periodic continuous gravitational waves. These analyses range from targeted searches for gravitational-wave signals from known pulsar
We present a new veto procedure to distinguish between continuous gravitational wave (CW) signals and the detector artifacts that can mimic their behavior. The veto procedure exploits the fact that a long-lasting coherent disturbance is less likely t