ﻻ يوجد ملخص باللغة العربية
Thermodynamics and information theory have been intimately related since the times of Maxwell and Boltzmann. Recently it was shown that the dissipated work in an arbitrary non-equilibrium process is related to the R{e}nyi divergences between two states along the forward and reversed dynamics. Here we show that the relation between dissipated work and Renyi divergences generalizes to $mathcal{PT}$-symmetric quantum mechanics with unbroken $mathcal{PT}$ symmetry. In the regime of broken $mathcal{PT}$ symmetry, the relation between dissipated work and Renyi divergences does not hold as the norm is not preserved during the dynamics. This finding is illustrated for an experimentally relevant system of two-coupled cavities.
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extend to $mathcal{PT}$-symmetric quantum system with unbroken $mathcal{PT}$ symmetry, which is a consequence of microscopic rev
In this work, we establish an exact relation which connects the heat exchange between two systems initialized in their thermodynamic equilibrium states at different temperatures and the R{e}nyi divergences between the initial thermodynamic equilibriu
A series of geometric concepts are formulated for $mathcal{PT}$-symmetric quantum mechanics and they are further unified into one entity, i.e., an extended quantum geometric tensor (QGT). The imaginary part of the extended QGT gives a Berry curvature
Time-dependent $mathcal{PT}$-symmetric quantum mechanics is featured by a varying inner-product metric and has stimulated a number of interesting studies beyond conventional quantum mechanics. In this paper, we explore geometric aspects of time-depen
$mathcal{PT}$-symmetric quantum mechanics has been considered an important theoretical framework for understanding physical phenomena in $mathcal{PT}$-symmetric systems, with a number of $mathcal{PT}$-symmetry related applications. This line of resea