ترغب بنشر مسار تعليمي؟ اضغط هنا

Capture of exocomets and the erosion of the Oort cloud due to stellar encounters in the Galaxy

299   0   0.0 ( 0 )
 نشر من قبل Lucie Jilkova
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Oort cloud (OC) probably formed more than 4$,$Gyr ago and has been moving with the Sun in the Galaxy since, exposed to external influences, most prominently to the Galactic tide and passing field stars. Theories suggest that other stars might posses exocomets distributed similarly to our OC. We study the erosion of the OC and the possibility for capturing exocomets during the encounters with such field stars. We carry out simulations of flybys, where both stars are surrounded by a cloud of comets. We measure how many exocomets are transferred to the OC, how many OCs comets are lost, and how this depends on the other stars mass, velocity and impact parameter. Exocomets are transferred to the OC only during relatively slow ($lesssim0.5,$km$,$s$^{-1}$) and close ($lesssim10^5,$AU) flybys and these are expected to be extremely rare. Assuming that all passing stars are surrounded by a cloud of exocomets, we derive that the fraction of exocomets in the OC has been about $10^{-5}$--$10^{-4}$. Finally we simulate the OC for the whole lifetime of the Sun, taking into account the encounters and the tidal effects. The OC has lost 25--65% of its mass, mainly due to stellar encounters, and at most 10% (and usually much less) of its mass can be captured. However, exocomets are often lost shortly after the encounter that delivers them, due to the Galactic tide and consecutive encounters.

قيم البحث

اقرأ أيضاً

We present a chronology of the formation and early evolution of the Oort cloud by simulations. These simulations start with the Solar System being born with planets and asteroids in a stellar cluster orbiting the Galactic center. Upon ejection from i ts birth environment, we continue to follow the evolution of the Solar System while it navigates the Galaxy as an isolated planetary system. We conclude that the range in semi-major axis between 100au and several 10$^3$,au still bears the signatures of the Sun being born in a 1000MSun/pc$^3$ star cluster, and that most of the outer Oort cloud formed after the Solar System was ejected. The ejection of the Solar System, we argue, happened between 20Myr and 50Myr after its birth. Trailing and leading trails of asteroids and comets along the Suns orbit in the Galactic potential are the by-product of the formation of the Oort cloud. These arms are composed of material that became unbound from the Solar System when the Oort cloud formed. Today, the bulk of the material in the Oort cloud ($sim 70$%) originates from the region in the circumstellar disk that was located between $sim 15$,au and $sim 35$,au, near the current location of the ice giants and the Centaur family of asteroids. According to our simulations, this population is eradicated if the ice-giant planets are born in orbital resonance. Planet migration or chaotic orbital reorganization occurring while the Solar System is still a cluster member is, according to our model, inconsistent with the presence of the Oort cloud. About half the inner Oort cloud, between 100 and $10^4$,au, and a quarter of the material in the outer Oort cloud, $apgt 10^4$,au, could be non-native to the Solar System but was captured from free-floating debris in the cluster or from the circumstellar disk of other stars in the birth cluster.
It is possible that the formation of the Oort Cloud dates back to the earliest epochs of solar system history. At that time, the Sun was almost certainly a member of the stellar cluster, where it was born. Since the solar birth cluster is likely to h ave been massive (1000--10 000 Msol), and therefore long-lived, an issue concerns the survival of such a primordial Oort Cloud. We have investigated this issue by simulating the orbital evolution of Oort Cloud comets for several hundred Myr, assuming the Sun to start its life as a typical member of such a massive cluster. We have devised a synthetic representation of the relevant dynamics, where the cluster potential is represented by a King model, and about 20 close encounters with individual cluster stars are selected and integrated based on the solar orbit and the cluster structure. Thousands of individual simulations are made, each including 3 000 comets with orbits with three different initial semi-major axes. Practically the entire initial Oort Cloud is found to be lost for our choice of semi-major axes (5 000--20 000 au), independent of the cluster mass, although the chance of survival is better for the smaller cluster, since in a certain fraction of the simulations the Sun orbits at relatively safe distances from the dense cluster centre. For the range of birth cluster sizes that we investigate, a primordial Oort Cloud will likely survive only as a small inner core with semi-major axes < 3 000 au. Such a population of comets would be inert to orbital diffusion into an outer halo and subsequent injection into observable orbits. Some mechanism is therefore needed to accomplish this transfer, in case the Oort Cloud is primordial and the birth cluster did not have a low mass. From this point of view, our results lend some support to a delayed formation of the Oort Cloud, that occurred after the Sun had left its birth cluster.
Context: Distant trans-Neptunian objects are subject to planetary perturbations and galactic tides. The former decrease with the distance, while the latter increase. In the intermediate regime where they have the same order of magnitude (the inert Oo rt cloud), both are weak, resulting in very long evolution timescales. To date, three observed objects can be considered to belong to this category. Aims: We aim to provide a clear understanding of where this transition occurs, and to characterise the long-term dynamics of small bodies in the intermediate regime: relevant resonances, chaotic zones (if any), and timescales at play. Results: There exists a tilted equilibrium plane (Laplace plane) about which orbits precess. The dynamics is integrable in the low and high semi-major axis regimes, but mostly chaotic in between. From 800 to 1100 au, the chaos covers almost all the eccentricity range. The diffusion timescales are large, but not to the point of being indiscernible in a 4.5 Gyrs duration: the perihelion distance can actually vary from tens to hundreds of au. Orbital variations are favoured in specific ranges of inclination corresponding to well-defined resonances. Starting from uniform distributions, the orbital angles cluster after 4.5 Gyrs for semi-major axes larger than 500 au, because of a very slow differential precession. Conclusions: Even if it is characterised by very long timescales, the inert Oort cloud is much less inert than it appears. Orbits can be considered inert over 4.5 Gyrs only in small portions of the space of orbital elements, which include (90377) Sedna and 2012VP113. Effects of the galactic tides are discernible down to semi-major axes of about 500 au. We advocate including the galactic tides in simulations of distant trans-Neptunian objects, especially when studying the formation of detached bodies or the clustering of orbital elements.
Comets in the Oort cloud evolve under the influence of internal and external perturbations, such as giant planets, stellar passages, and the galactic tidal field. We aim to study the dynamical evolution of the comets in the Oort cloud, accounting for external perturbations (passing stars and the galactic tide). We first construct an analytical model of stellar encounters. We find that individual perturbations do not modify the dynamics of the comets in the cloud unless very close (< 0.5pc) encounters occur. Using proper motions, parallaxes, and radial velocities from Gaia DR2, we construct an astrometric catalogue of 14,659 stars that are within 50pc from the Sun. For all these stars we calculate the time and the closest distance to the Sun. We find that the cumulative effect of relatively distant ($leq1$ pc) passing stars can perturb the comets in the Oort cloud. Finally, we study the dynamical evolution of the comets in the Oort cloud under the influence of multiple stellar encounters within 2.5pc from the Sun and the galactic tidal field over $pm10$Myr. We considered two models for the Oort cloud, compact (a $leq$0.25 pc) and extended (a$ leq0.5$ pc). We find that the cumulative effect of stellar encounters is the major perturber of the Oort cloud for a compact configuration while for the extended, the galactic tide is the major perturber. In both cases, the effect of passing stars and the galactic tide raises the semi-major axis of $sim1.1$% of the comets at the edge of the cloud up to interstellar regions ($a >0.5$pc). This leads to the creation of transitional interstellar comets, which might become interstellar objects due to external perturbations. This raises the question about the existence of a cloud of objects in the interstellar space which might overlap with our Oort cloud if we consider that other planetary systems face similar processes for the ejection of comets.
73 - Zdenek Sekanina 2019
A 2000-2017 set of long-period comets with high-quality orbits of perihelion distance <1 AU is used to show that the objects that perish shortly before perihelion are nearly exclusively the Oort Cloud comets, especially those with perihelia within 0. 6 AU of the Sun, intrinsically fainter, and dust poor. Their propensity for disintegration is much higher than predicted by Bortles perihelion survival rule, prompting the author to propose a new synoptic index to be tested in future prognostication efforts. By their susceptibility to demise near the Sun, the nuclei of Oort Cloud comets differ dramatically from the nuclei of other long-period comets that almost always survive. In this scenario, `Oumuamua -- discovered after perihelion -- is in all probability a major piece of debris of an interstellar comet that was bound to perish near perihelion if it was similar to, though much fainter than, the known Oort Cloud comets. The nondetection of `Oumuamua by the Spitzer Space Telescope is compatible with optical data for pancake shape, but not for cigar shape, with the maximum dimension not exceeding 160 m (at an 0.1 albedo). Although the solar radiation pressure induced nongravitational acceleration requires very high porosity, `Oumuamuas estimated mass is orders of magnitude greater than for a cloud of unbound submicron-sized dust grains of equal cross section. The acceleration could have displaced `Oumuamua by 250,000 km in 50 days, scattering other potential debris over a large volume of space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا