ﻻ يوجد ملخص باللغة العربية
Context: Distant trans-Neptunian objects are subject to planetary perturbations and galactic tides. The former decrease with the distance, while the latter increase. In the intermediate regime where they have the same order of magnitude (the inert Oort cloud), both are weak, resulting in very long evolution timescales. To date, three observed objects can be considered to belong to this category. Aims: We aim to provide a clear understanding of where this transition occurs, and to characterise the long-term dynamics of small bodies in the intermediate regime: relevant resonances, chaotic zones (if any), and timescales at play. Results: There exists a tilted equilibrium plane (Laplace plane) about which orbits precess. The dynamics is integrable in the low and high semi-major axis regimes, but mostly chaotic in between. From 800 to 1100 au, the chaos covers almost all the eccentricity range. The diffusion timescales are large, but not to the point of being indiscernible in a 4.5 Gyrs duration: the perihelion distance can actually vary from tens to hundreds of au. Orbital variations are favoured in specific ranges of inclination corresponding to well-defined resonances. Starting from uniform distributions, the orbital angles cluster after 4.5 Gyrs for semi-major axes larger than 500 au, because of a very slow differential precession. Conclusions: Even if it is characterised by very long timescales, the inert Oort cloud is much less inert than it appears. Orbits can be considered inert over 4.5 Gyrs only in small portions of the space of orbital elements, which include (90377) Sedna and 2012VP113. Effects of the galactic tides are discernible down to semi-major axes of about 500 au. We advocate including the galactic tides in simulations of distant trans-Neptunian objects, especially when studying the formation of detached bodies or the clustering of orbital elements.
We present a chronology of the formation and early evolution of the Oort cloud by simulations. These simulations start with the Solar System being born with planets and asteroids in a stellar cluster orbiting the Galactic center. Upon ejection from i
Recently the ROSINA mass spectrometer suite on board the European Space Agencys Rosetta spacecraft discovered an abundant amount of molecular oxygen, O2, in the coma of Jupiter family comet 67P/Churyumov-Gerasimenko of O2/H2O = 3.80+/-0.85%. It could
It is possible that the formation of the Oort Cloud dates back to the earliest epochs of solar system history. At that time, the Sun was almost certainly a member of the stellar cluster, where it was born. Since the solar birth cluster is likely to h
The interstellar comet 2I/Borisov bears a strong resemblance to Oort Cloud comets, judging from its appearance in images taken over the first six weeks of observation. To test the proposed affinity in more diagnostic terms, 2I is compared to Oort Clo
If the Solar system had a history of planet migration, the signature of that migration may be imprinted on the populations of asteroids and comets that were scattered in the planets wake. Here, we consider the dynamical and collisional evolution of i