ﻻ يوجد ملخص باللغة العربية
We present a study on the impact of Mn$^{3+}$ substitution in the geometrically frustrated Ising garnet Ho$_3$Ga$_5$O$_{12}$ using bulk magnetic measurements and low temperature powder neutron diffraction. We find that the transition temperature, $T_N$ = 5.8 K, for Ho$_3$MnGa$_4$O$_{12}$ is raised by almost 20 when compared to Ho$_3$Ga$_5$O$_{12}$. Powder neutron diffraction on Ho$_3$Mn$_x$Ga$_{5-x}$O$_{12}$ ($x$ = 0.5, 1) below $T_N$ shows the formation of a long range ordered ordered state with $mathbf{k}$ = (0,0,0). Ho$^{3+}$ spins are aligned antiferromagnetically along the six crystallographic axes with no resultant moment while the Mn$^{3+}$ spins are oriented along the body diagonals, such that there is a net moment along [111]. The magnetic structure can be visualised as ten-membered rings of corner-sharing triangles of Ho$^{3+}$ spins with the Mn$^{3+}$ spins ferromagnetically coupled to each individual Ho$^{3+}$ spin in the triangle. Substitution of Mn$^{3+}$ completely relieves the magnetic frustration with $f = theta_{CW}/T_N approx 1.1$ for Ho$_3$MnGa$_4$O$_{12}$.
We report the results of neutron scattering on a powder sample of Gd3Ga5O12 at high magnetic fields. We find that in high fields (B>1.8 T) the system is not fully polarized, but has a small canting of the moments induced by the dipolar interaction. W
Gd3Ga5O12, (GGG), has an extraordinary magnetic phase diagram, where no long range order is found down to 25 mK despite Theta_CW approx 2 K. However, long range order is induced by an applied field of around 1 T. Motivated by recent theoretical devel
The substitution of gallium by aluminum, germanium, tin and indium in PuCoGa5, the actinide-based superconductor with the highest critical temperature, has been investigated. Only systems with 20% substitution by Al and Ge (i.e. PuCoGa4Al and PuCoGa4
We investigated the electronic structure of layered Mn oxide Bi3Mn4O12(NO3) with a Mn honeycomb lattice by x-ray absorption spectroscopy. The valence of Mn was determined to be 4+ with a small charge-transfer energy. We estimated the values of supere
$Li_{2}RuO_{3}$ with a honeycomb structure undergoes a drastic transition from a regular honeycomb lattice with the $C2/m$ space group to a valence bond solid state of the $P2_{1}/m$ space group with an extremely strong dimerization at 550 K. We synt