ﻻ يوجد ملخص باللغة العربية
We derive cosmological constraints from the probability distribution function (PDF) of evolved large-scale matter density fluctuations. We do this by splitting lines of sight by density based on their count of tracer galaxies, and by measuring both gravitational shear around and counts-in-cells in overdense and underdense lines of sight, in Dark Energy Survey (DES) First Year and Sloan Digital Sky Survey (SDSS) data. Our analysis uses a perturbation theory model (see companion paper Friedrich at al.) and is validated using N-body simulation realizations and log-normal mocks. It allows us to constrain cosmology, bias and stochasticity of galaxies w.r.t. matter density and, in addition, the skewness of the matter density field. From a Bayesian model comparison, we find that the data weakly prefer a connection of galaxies and matter that is stochastic beyond Poisson fluctuations on <=20 arcmin angular smoothing scale. The two stochasticity models we fit yield DES constraints on the matter density $Omega_m=0.26^{+0.04}_{-0.03}$ and $Omega_m=0.28^{+0.05}_{-0.04}$ that are consistent with each other. These values also agree with the DES analysis of galaxy and shear two-point functions (3x2pt) that only uses second moments of the PDF. Constraints on $sigma_8$ are model dependent ($sigma_8=0.97^{+0.07}_{-0.06}$ and $0.80^{+0.06}_{-0.07}$ for the two stochasticity models), but consistent with each other and with the 3x2pt results if stochasticity is at the low end of the posterior range. As an additional test of gravity, counts and lensing in cells allow to compare the skewness $S_3$ of the matter density PDF to its LCDM prediction. We find no evidence of excess skewness in any model or data set, with better than 25 per cent relative precision in the skewness estimate from DES alone.
We present density split statistics, a framework that studies lensing and counts-in-cells as a function of foreground galaxy density, thereby providing a large-scale measurement of both 2-point and 3-point statistics. Our method extends our earlier w
We perform a joint analysis of the counts of redMaPPer clusters selected from the Dark Energy Survey (DES) Y1 data and multi-wavelength follow-up data collected within the 2500 deg$^2$ South Pole Telescope (SPT) SZ survey. The SPT follow-up data, cal
We present a cosmological analysis of abundances and stacked weak-lensing profiles of galaxy clusters, exploiting the AMICO KiDS-DR3 catalogue. The sample consists of 3652 galaxy clusters with intrinsic richness $lambda^*geq20$, over an effective are
We present a re-analysis of cosmic shear and galaxy clustering from first-year Dark Energy Survey data (DES Y1), making use of a Hybrid Effective Field Theory (HEFT) approach to model the galaxy-matter relation on weakly non-linear scales, initially
We study a phenomenological class of models where dark matter converts to dark radiation in the low redshift epoch. This class of models, dubbed DMDR, characterizes the evolution of comoving dark matter density with two extra parameters, and may be a