ﻻ يوجد ملخص باللغة العربية
We present a cosmological analysis of abundances and stacked weak-lensing profiles of galaxy clusters, exploiting the AMICO KiDS-DR3 catalogue. The sample consists of 3652 galaxy clusters with intrinsic richness $lambda^*geq20$, over an effective area of 377 deg$^2$, in the redshift range $zin[0.1,,0.6]$. We quantified the purity and completeness of the sample through simulations. The statistical analysis has been performed by simultaneously modelling the comoving number density of galaxy clusters and the scaling relation between the intrinsic richnesses and the cluster masses, assessed through a stacked weak-lensing profile modelling. The fluctuations of the matter background density, caused by super-survey modes, have been taken into account in the likelihood. Assuming a flat $Lambda$CDM model, we constrained $Omega_{rm m}$, $sigma_8$, $S_8 equiv sigma_8(Omega_{rm m}/0.3)^{0.5}$, and the parameters of the mass-richness scaling relation. We obtained $Omega_{rm m}=0.24^{+0.04}_{-0.03}$, $sigma_8=0.89^{+0.06}_{-0.05}$, $S_8=0.80^{+0.04}_{-0.04}$. The constraint on $S_8$ is consistent within 1$sigma$ with the results from WMAP and Planck. Furthermore, we got constraints on the cluster mass scaling relation in agreement with those obtained from a previous weak-lensing only analysis.
Context. The large-scale mass distribution around dark matter haloes hosting galaxy clusters provides sensitive cosmological information. Aims. In this work, we make use of a large photometric galaxy cluster sample, constructed from the public Third
We present the mass calibration for galaxy clusters detected with the AMICO code in KiDS DR3 data. The cluster sample comprises $sim$ 7000 objects and covers the redshift range 0.1 < $z$ < 0.6. We perform a weak lensing stacked analysis by binning th
Unbiased and precise mass calibration of galaxy clusters is crucial to fully exploit galaxy clusters as cosmological probes. Stacking of weak lensing signal allows us to measure observable-mass relations down to less massive halos halos without extra
We present the first catalogue of galaxy cluster candidates derived from the third data release of the Kilo Degree Survey (KiDS-DR3). The sample of clusters has been produced using the Adaptive Matched Identifier of Clustered Objects (AMICO) algorith
A catalogue of galaxy clusters was obtained in an area of 414 sq deg up to a redshift $zsim0.8$ from the Data Release 3 of the Kilo-Degree Survey (KiDS-DR3), using the Adaptive Matched Identifier of Clustered Objects (AMICO) algorithm. The catalogue