ﻻ يوجد ملخص باللغة العربية
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
One of the simplest non-Hermitian Hamiltonians first proposed by Schwartz (1960 {it Commun. Pure Appl. Math.} tb{13} 609) which may possess a spectral singularity is analyzed from the point of view of non-Hermitian generalization of quantum mechanics
In this paper, whose aims are mainly pedagogical, we illustrate how to use the local zeta regularization to compute the stress-energy tensor of the Casimir effect. Our attention is devoted to the case of a neutral, massless scalar field in flat space
We prove the integrability and superintegrability of a family of natural Hamiltonians which includes and generalises those studied in some literature, originally defined on the 2D Minkowski space. Some of the new Hamiltonians are a perfect analogy of
In this paper a geometric method based on Grassmann manifolds and matrix Riccati equations to make hermitian matrices diagonal is presented. We call it Riccati Diagonalization.