ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetometry using fluorescence of sodium vapor

209   0   0.0 ( 0 )
 نشر من قبل Yan Feng
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic resonance of sodium fluorescence is studied with varying laser intensity, duty cycle, and field strength. A magnetometer based on sodium vapor cell filled with He buffer gas is demonstrated, which uses a single amplitude-modulated laser beam. With a 589 nm laser tuned at D1 or D2 line, the magnetic field is inferred from the variation of fluorescence. A magnetic field sensitivity of 150 pT per Hz square root is achieved at D1 line. The work is a step towards sensitive remote magnetometry with mesospheric sodium.

قيم البحث

اقرأ أيضاً

The Fresnel-Fizeau effect of transverse drag, in which the trajectory of a light beam changes due to transverse motion of the optical medium, is usually extremely small and hard to detect. We observe transverse drag in a moving hot-vapor cell, utiliz ing slow light due to electromagnetically induced transparency (EIT). The drag effect is enhanced by a factor 360,000, corresponding to the ratio between the light speed in vacuum and the group velocity under EIT conditions. We study the contribution of the thermal atomic motion, which is much faster than the mean medium velocity, and identify the regime where its effect on the transverse drag is negligible.
We uncover a highly nontrivial dependence of the spin-noise (SN) resonance broadening induced by the intense probe beam. The measurements were performed by probing the cell with cesium vapor at the wavelengths of the transition ${6}^2S_{1/2} leftrigh tarrow {6}^2P_{3/2}$ ($mathrm{D}_2$ line) with the unresolved hyperfine structure of the excited state. The light-induced broadening of the SN resonance was found to differ strongly at different slopes of the $mathrm{D}_2$ line and, generally, varied nonmonotonically with light power. We discuss the effect in terms of the phenomenological Bloch equations for the spin fluctuations and demonstrate that the SN broadening behavior strongly depends on the relation between the pumping and excited-level decay rates, the spin precession, and decoherence rates. To reconcile the puzzling experimental results, we propose that the degree of optical perturbation of the spin-system is controlled by the route of the excited-state relaxation of the atom or, in other words, that the act of optical excitation of the atom does not necessarily break down completely its ground-state coherence and continuity of the spin precession. Spectral asymmetry of the effect, in this case, is provided by the position of the closed transition $F = 4 leftrightarrow F = 5$ at the short-wavelength side of the line. This hypothesis, however, remains to be proven by microscopic calculations.
In this manuscript, we demonstrate the ability of nonlinear light-atom interactions to produce tunably non-Gaussian, partially self-healing optical modes. Gaussian spatial-mode light tuned near to the atomic resonances in hot rubidium vapor is shown to result in non-Gaussian output mode structures that may be controlled by varying either the input beam power or the temperature of the atomic vapor. We show that the output modes exhibit a degree of self-reconstruction after encountering an obstruction in the beam path. The resultant modes are similar to truncated Bessel-Gauss modes that exhibit the ability to self-reconstruct earlier upon propagation than Gaussian modes. The ability to generate tunable, self-reconstructing beams has potential applications to a variety of imaging and communication scenarios.
We report here the first observation of electromagnetically induced transparency (EIT) in $^{20}$Ne. The power broadening of the EIT linewidth is measured as a function of neon pressure and RF excitation power. Doppler effects on the EIT broadening a re found even at low pressures and low intensities, where the linewidth should be governed only by homogeneous effects.
We present experimental and numerical studies of nonlinear magneto-optical rotation (NMOR) in rubidium vapor excited with resonant light tuned to the $5^2!S_{1/2}rightarrow 6^2!P_{1/2}$ absorption line (421~nm). Contrary to the experiments performed to date on the strong $D_1$ or $D_2$ lines, in this case, the spontaneous decay of the excited state $6^2!P_{1/2}$ may occur via multiple intermediate states, affecting the dynamics, magnitude and other characteristics of NMOR. Comparing the experimental results with the results of modelling based on Auzinsh et al., Phys. Rev. A 80, 1 (2009), we demonstrate that despite the complexity of the structure, NMOR can be adequately described with a model, where only a single excited-state relaxation rate is used.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا