ﻻ يوجد ملخص باللغة العربية
In this manuscript, we demonstrate the ability of nonlinear light-atom interactions to produce tunably non-Gaussian, partially self-healing optical modes. Gaussian spatial-mode light tuned near to the atomic resonances in hot rubidium vapor is shown to result in non-Gaussian output mode structures that may be controlled by varying either the input beam power or the temperature of the atomic vapor. We show that the output modes exhibit a degree of self-reconstruction after encountering an obstruction in the beam path. The resultant modes are similar to truncated Bessel-Gauss modes that exhibit the ability to self-reconstruct earlier upon propagation than Gaussian modes. The ability to generate tunable, self-reconstructing beams has potential applications to a variety of imaging and communication scenarios.
We study electromagnetically induced transparency (EIT) in a heated potassium vapor cell, using a simple optical setup with a single free-running diode laser and an acousto-optic modulator. Despite the fact that the Doppler width is comparable to the
The Fresnel-Fizeau effect of transverse drag, in which the trajectory of a light beam changes due to transverse motion of the optical medium, is usually extremely small and hard to detect. We observe transverse drag in a moving hot-vapor cell, utiliz
Over the last decade, optical atomic clocks have surpassed their microwave counterparts and now offer the ability to measure time with an increase in precision of two orders of magnitude or more. This performance increase is compelling not only for e
We investigate numerically the dynamics of optical vortex beams carrying different topological charges, launched in a dissipative three level ladder type nonlinear atomic vapor. We impose the electromagnetically induced transparency (EIT) condition o
Laboratory optical atomic clocks achieve remarkable accuracy (now counted to 18 digits or more), opening possibilities to explore fundamental physics and enable new measurements. However, their size and use of bulk components prevent them from being