ﻻ يوجد ملخص باللغة العربية
We model the expansion history of the Universe as a Gaussian Process and find constraints on the dark energy density and its low-redshift evolution using distances inferred from the Luminous Red Galaxy (LRG) and Lyman-alpha (Ly$alpha$) datasets of the Baryon Oscillation Spectroscopic Survey, supernova data from the Joint Light-curve Analysis (JLA) sample, Cosmic Microwave Background (CMB) data from the Planck satellite, and local measurement of the Hubble parameter from the Hubble Space Telescope ($mathsf H0$). Our analysis shows that the CMB, LRG, Ly$alpha$, and JLA data are consistent with each other and with a $Lambda$CDM cosmology, but the ${mathsf H0}$ data is inconsistent at moderate significance. Including the presence of dark radiation does not alleviate the ${mathsf H0}$ tension in our analysis. While some of these results have been noted previously, the strength here lies in that we do not assume a particular cosmological model. We calculate the growth of the gravitational potential in General Relativity corresponding to these general expansion histories and show that they are well-approximated by $Omega_{rm m}^{0.55}$ given the current precision. We assess the prospects for upcoming surveys to measure deviations from $Lambda$CDM using this model-independent approach.
Reconstructing the expansion history of the Universe from type Ia supernovae data, we fit the growth rate measurements and put model-independent constraints on some key cosmological parameters, namely, $Omega_mathrm{m},gamma$, and $sigma_8$. The cons
The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instabil
Marginal likelihoods for the cosmic expansion rates are evaluated using the `Constitution data of 397 supernovas, thereby updating the results in some previous works. Even when beginning with a very strong prior probability that favors an accelerated
We perform a joint determination of the distance-redshift relation and cosmic expansion rate at redshifts z = 0.44, 0.6 and 0.73 by combining measurements of the baryon acoustic peak and Alcock-Paczynski distortion from galaxy clustering in the Wiggl
In the current work, we have implemented an extension of the standard Gaussian Process formalism, namely the Multi-Task Gaussian Process with the ability to perform a joint learning of several cosmological data simultaneously. We have utilised the lo