ترغب بنشر مسار تعليمي؟ اضغط هنا

An improved model-independent assessment of the late-time cosmic expansion

82   0   0.0 ( 0 )
 نشر من قبل Balakrishna Sandeep Haridasu
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the current work, we have implemented an extension of the standard Gaussian Process formalism, namely the Multi-Task Gaussian Process with the ability to perform a joint learning of several cosmological data simultaneously. We have utilised the low-redshift expansion rate data from Supernovae Type-Ia (SN), Baryon Acoustic Oscillations (BAO) and Cosmic Chronometers (CC) data in a joint analysis. We have tested several possible models of covariance functions and find very consistent estimates for cosmologically relevant parameters. In the current formalism, we also find provisions for heuristic arguments which allow us to select the best-suited kernel for the reconstruction of expansion rate data. We also utilised our method to account for systematics in CC data and find an estimate of $H_0 = 68.52^{+0.94 + 2.51 (sys)}_{-0.94} $ $textrm{km/s Mpc}^{-1}$ and a corresponding $r_d = 145.61^{+2.82}_{ - 2.82 - 4.3 (sys)} $ Mpc as our primary result. Subsequently, we find constraints on the present deceleration parameter $q_0 = -0.52 pm 0.06$ and the transition redshift $z_T = 0.64^{+0.12}_{-0.09}$. All the estimated cosmological parameters are found to be in good agreement with the standard $Lambda$CDM scenario. Including the local model-independent $H_0$ estimate to the analysis we find $H_0 = 71.40^{ + 0.30 + 1.65 (sys)}_{- 0.30 } $ $textrm{km/s Mpc}^{-1}$ and the corresponding $r_d = 141.29^{ + 1.31 }_{-1.31-2.63 (sys)}$ Mpc. Also, the constraints on $r_d H_0$ remain consistent throughout our analysis and also with the model-dependent CMB estimate. Using the $mathcal{O}m(z)$ diagnostic, we find that the concordance model is very consistent within the redshift range $z lesssim 2$ and mildly discrepant for $z gtrsim 2$.



قيم البحث

اقرأ أيضاً

Cosmic parallax is the change of angular separation between pair of sources at cosmological distances induced by an anisotropic expansion. An accurate astrometric experiment like Gaia could observe or put constraints on cosmic parallax. Examples of a nisotropic cosmological models are Lemaitre-Tolman-Bondi void models for off-center observers (introduced to explain the observed acceleration without the need for dark energy) and Bianchi metrics. If dark energy has an anisotropic equation of state, as suggested recently, then a substantial anisotropy could arise at $z lesssim 1$ and escape the stringent constraints from the cosmic microwave background. In this paper we show that such models could be constrained by the Gaia satellite or by an upgraded future mission.
283 - Moncy V. John 2010
Marginal likelihoods for the cosmic expansion rates are evaluated using the `Constitution data of 397 supernovas, thereby updating the results in some previous works. Even when beginning with a very strong prior probability that favors an accelerated expansion, we obtain a marginal likelihood for the deceleration parameter $q_0$ peaked around zero in the spatially flat case. It is also found that the new data significantly constrains the cosmographic expansion rates, when compared to the previous analyses. These results may strongly depend on the Gaussian prior probability distribution chosen for the Hubble parameter represented by $h$, with $h=0.68pm 0.06$. This and similar priors for other expansion rates were deduced from previous data. Here again we perform the Bayesian model-independent analysis in which the scale factor is expanded into a Taylor series in time about the present epoch. Unlike such Taylor expansions in terms of redshift, this approach has no convergence problem.
We use current measurements of the expansion rate $H(z)$ and cosmic background radiation bounds on the spatial curvature of the Universe to impose cosmological model-independent constraints on cosmic opacity. To perform our analyses, we compare opaci ty-free distance modulus from $H(z)$ data with those from two supernovae Ia compilations: the Union2.1 plus the most distant spectroscopically confirmed SNe Ia (SNe Ia SCP-0401 $z=1.713$) and two Sloan Digital Sky Survey (SDSS) subsamples. The influence of different SNe Ia light-curve fitters (SALT2 and MLCS2K2) on the results is also verified. We find that a completely transparent universe is in agreement with the largest sample in our analysis (Union 2.1 plus SNe Ia SCP-0401). For SDSS sample a such universe it is compatible at $< 1.5sigma$ level regardless the SNe Ia light-curve fitting used.
Reconstructing the expansion history of the Universe from type Ia supernovae data, we fit the growth rate measurements and put model-independent constraints on some key cosmological parameters, namely, $Omega_mathrm{m},gamma$, and $sigma_8$. The cons traints are consistent with those from the concordance model within the framework of general relativity, but the current quality of the data is not sufficient to rule out modified gravity models. Adding the condition that dark energy density should be positive at all redshifts, independently of its equation of state, further constrains the parameters and interestingly supports the concordance model.
A spectral-energy distribution (SED) model for Type Ia supernovae (SNe Ia) is a critical tool for measuring precise and accurate distances across a large redshift range and constraining cosmological parameters. We present an improved model framework, SALT3, which has several advantages over current models including the leading SALT2 model (SALT2.4). While SALT3 has a similar philosophy, it differs from SALT2 by having improved estimation of uncertainties, better separation of color and light-curve stretch, and a publicly available training code. We present the application of our training method on a cross-calibrated compilation of 1083 SNe with 1207 spectra. Our compilation is $2.5times$ larger than the SALT2 training sample and has greatly reduced calibration uncertainties. The resulting trained SALT3.K21 model has an extended wavelength range $2000$-$11000$ angstroms (1800 angstroms redder) and reduced uncertainties compared to SALT2, enabling accurate use of low-$z$ $I$ and $iz$ photometric bands. Including these previously discarded bands, SALT3.K21 reduces the Hubble scatter of the low-z Foundation and CfA3 samples by 15% and 10%, respectively. To check for potential systematic uncertainties we compare distances of low ($0.01<z<0.2$) and high ($0.4<z<0.6$) redshift SNe in the training compilation, finding an insignificant $2pm14$ mmag shift between SALT2.4 and SALT3.K21. While the SALT3.K21 model was trained on optical data, our method can be used to build a model for rest-frame NIR samples from the Roman Space Telescope. Our open-source training code, public training data, model, and documentation are available at https://saltshaker.readthedocs.io/en/latest/, and the model is integrated into the sncosmo and SNANA software packages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا