ﻻ يوجد ملخص باللغة العربية
We introduce new boundary conditions for differential forms on symplectic manifolds with boundary. These boundary conditions, dependent on the symplectic structure, allows us to write down elliptic boundary value problems for both second-order and fourth-order symplectic Laplacians and establish Hodge theories for the cohomologies of primitive forms on manifolds with boundary. We further use these boundary conditions to define a relative version of the primitive cohomologies and to relate primitive cohomologies with Lefschetz maps on manifolds with boundary. As we show, these cohomologies of primitive forms can distinguish certain Kahler structures of Kahler manifolds with boundary.
We study symplectic Laplacians on compact symplectic manifolds with boundary. These Laplacians are associated with symplectic cohomologies of differential forms and can be of fourth-order. We introduce several natural boundary conditions on different
We show that the exterior derivative operator on a symplectic manifold has a natural decomposition into two linear differential operators, analogous to the Dolbeault operators in complex geometry. These operators map primitive forms into primitive fo
We introduce filtered cohomologies of differential forms on symplectic manifolds. They generalize and include the cohomologies discussed in Paper I and II as a subset. The filtered cohomologies are finite-dimensional and can be associated with differ
We present some computations of relative symplectic cohomology, with the help of an index bounded contact form. For a Liouville domain with an index bounded boundary, we construct a spectral sequence which starts from its classical symplectic cohomol
Let $H(q,p)$ be a Hamiltonian on $T^*T^n$. We show that the sequence $H_{k}(q,p)=H(kq,p)$ converges for the $gamma$ topology defined by the author, to $bar{H}(p)$. This is extended to the case where only some of the variables are homogenized, that is