ﻻ يوجد ملخص باللغة العربية
The distribution of photoelectrons acquired in angle-resolved photoemission spectroscopy can be mapped onto energy-momentum space of the Bloch electrons in the crystal. The explicit forms of the mapping function $f$ depend on the configuration of the apparatus as well as on the type of the photoelectron analyzer. We show that the existence of the analytic forms of $f^{text{-}1}$ is guaranteed in a variety of setups. The variety includes the case when the analyzer is equipped with a photoelectron deflector. Thereby, we provide a demonstrative mapping program implemented by an algorithm that utilizes both $f$ and $f^{text{-}1}$. The mapping methodology is also usable in other spectroscopic methods such as momentum-resolved electron-energy loss spectroscopy.
Characterization of the electronic band structure of solid state materials is routinely performed using photoemission spectroscopy. Recent advancements in short-wavelength light sources and electron detectors give rise to multidimensional photoemissi
High resolution angle-resolved photoemission measurements have been carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7 K. Combined with theoretical calculations, we have discovered for the first time the ex
A laser-based angle resolved photoemission (APRES) system utilizing 6 eV photons from the fourth harmonic of a mode-locked Ti:sapphire oscillator is described. This light source greatly increases the momentum resolution and photoelectron count rate,
We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-bas
In order to exploit the intriguing optical properties of graphene it is essential to gain a better understanding of the light-matter interaction in the material on ultrashort timescales. Exciting the Dirac fermions with intense ultrafast laser pulses