ﻻ يوجد ملخص باللغة العربية
The Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. The mathematical set-up for this theorem is, however, not directly related to the physical fermion system, as it imposes on the fermion fields a non-local boundary condition known as the APS boundary condition by hand, which is unlikely to be realized in the materials. In this work, we attempt to reformulate the APS index in a physicist-friendly way for a simple set-up with $U(1)$ or $SU(N)$ gauge group on a flat four-dimensional Euclidean space. We find that the same index as APS is obtained from the domain-wall fermion Dirac operator with a local boundary condition, which is naturally given by the kink structure in the mass term. As the boundary condition does not depend on the gauge fields, our new definition of the index is easy to compute with the standard Fujikawa method.
We introduce a mathematician-friendly formulation of the physicist-friendly derivation of the Atiyah-Patodi-Singer index of our previous paper. Our viewpoint sheds some new light on the interplay among the Atiyah-Patodi-Singer boundary condition, domain-wall fermions, and edge modes.
We propose a non-perturbative formulation of the Atiyah-Patodi-Singer(APS) index in lattice gauge theory, in which the index is given by the $eta$ invariant of the domain-wall Dirac operator. Our definition of the index is always an integer with a fi
Atiyah-Singer index theorem on a lattice without boundary is well understood owing to the seminal work by Hasenfratz et al. But its extension to the system with boundary (the so-called Atiyah- Patodi-Singer index theorem), which plays a crucial role
The Atiyah-Patodi-Singer index theorem describes the bulk-edge correspondence of symmetry protected topological insulators. The mathematical setup for this theorem is, however, not directly related to the physical fermion system, as it imposes on the
We investigate an extension of ideas of Atiyah-Patodi-Singer (APS) to a noncommutative geometry setting framed in terms of Kasparov modules. We use a mapping cone construction to relate odd index pairings to even index pairings with APS boundary cond