ﻻ يوجد ملخص باللغة العربية
Broadcast is one of the fundamental network communication primitives. One node of a network, called the $mathit{source}$, has a message that has to be learned by all other nodes. We consider the feasibility of deterministic broadcast in radio networks. If nodes of the network do not have any labels, deterministic broadcast is impossible even in the four-cycle. On the other hand, if all nodes have distinct labels, then broadcast can be carried out, e.g., in a round-robin fashion, and hence $O(log n)$-bit labels are sufficient for this task in $n$-node networks. In fact, $O(log Delta)$-bit labels, where $Delta$ is the maximum degree, are enough to broadcast successfully. Hence, it is natural to ask if very short labels are sufficient for broadcast. Our main result is a positive answer to this question. We show that every radio network can be labeled using 2 bits in such a way that broadcast can be accomplished by some universal deterministic algorithm that does not know the network topology nor any bound on its size. Moreover, at the expense of an extra bit in the labels, we get the additional strong property that there exists a common round in which all nodes know that broadcast has been completed. Finally, we show that 3-bit labels are also sufficient to solve bo
We generalize the definition of Proof Labeling Schemes to reactive systems, that is, systems where the configuration is supposed to keep changing forever. As an example, we address the main classical test case of reactive tasks, namely, the task of t
We present simple deterministic algorithms for subgraph finding and enumeration in the broadcast CONGEST model of distributed computation: -- For any constant $k$, detecting $k$-paths and trees on $k$ nodes can be done in $O(1)$ rounds. -- For an
In this work we relate the deterministic complexity of factoring polynomials (over finite fields) to certain combinatorial objects we call m-schemes. We extend the known conditional deterministic subexponential time polynomial factoring algorithm for
We study and compare three coded schemes for single-server wireless broadcast of multiple description coded content to heterogeneous users. The users (sink nodes) demand different number of descriptions over links with different packet loss rates. Th
Energy is often the most constrained resource in networks of battery-powered devices, and as devices become smaller, they spend a larger fraction of their energy on communication (transceiver usage) not computation. As an imperfect proxy for true ene