ﻻ يوجد ملخص باللغة العربية
In this work we relate the deterministic complexity of factoring polynomials (over finite fields) to certain combinatorial objects we call m-schemes. We extend the known conditional deterministic subexponential time polynomial factoring algorithm for finite fields to get an underlying m-scheme. We demonstrate how the properties of m-schemes relate to improvements in the deterministic complexity of factoring polynomials over finite fields assuming the generalized Riemann Hypothesis (GRH). In particular, we give the first deterministic polynomial time algorithm (assuming GRH) to find a nontrivial factor of a polynomial of prime degree n where (n-1) is a smooth number.
In this paper we develop techniques that eliminate the need of the Generalized Riemann Hypothesis (GRH) from various (almost all) known results about deterministic polynomial factoring over finite fields. Our main result shows that given a polynomial
Finding cliques in random graphs and the closely related planted clique variant, where a clique of size t is planted in a random G(n,1/2) graph, have been the focus of substantial study in algorithm design. Despite much effort, the best known polynom
In this paper we study sums of powers of affine functions in (mostly) one variable. Although quite simple, this model is a generalization of two well-studied models: Waring decomposition and sparsest shift. For these three models there are natural ex
We reprove that the approximate degree of the OR function on n bits is Omega(sqrt(n)). We consider a linear program which is feasible if and only if there is an approximate polynomial for a given function, and apply the duality theory. The duality th
Limits on the number of satisfying assignments for CNS instances with n variables and m clauses are derived from various inequalities. Some bounds can be calculated in polynomial time, sharper bounds demand information about the distribution of the n