ترغب بنشر مسار تعليمي؟ اضغط هنا

$alpha$-cluster states in $^{46,54}$Cr from double-folding potentials

53   0   0.0 ( 0 )
 نشر من قبل Peter Mohr
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف Peter Mohr




اسأل ChatGPT حول البحث

$alpha$--cluster states in $^{46}$Cr and $^{54}$Cr are investigated in the double-folding model. This study complements a recent similar work of Souza and Miyake cite{Sou17} which was based on a specially shaped potential. Excitation energies, reduced widths, intercluster separations, and intra-band transition strengths are calculated and compared to experimental values for the ground state bands in $^{46}$Cr and $^{54}$Cr. The $alpha$-cluster potential is also applied to elastic scattering at low and intermediate energies. Here, as a byproduct, a larger radial extent of the neutron density in $^{50}$Ti is found.



قيم البحث

اقرأ أيضاً

70 - Y. Fujiwara Kyoto 2006
We calculate Lambda alpha, Sigma alpha and Xi alpha potentials from the nuclear-matter G-matrices of the SU6 quark-model baryon-baryon interaction. The alpha-cluster wave function is assumed to be a simple harmonic-oscillator shell-model wave functio n. A new method is proposed to derive the direct and knock-on terms of the interaction Born kernel from the hyperon-nucleon G-matrices, with explicit treatments of the nonlocality and the center-of-mass motion between the hyperon and alpha. We find that the SU6 quark-model baryon-baryon interactions, FSS and fss2, yield a reasonable bound-state energy for 5 He Lambda, -3.18 -- -3.62 MeV, in spite of the fact that they give relatively large depths for the Lambda single-particle potentials, 46 -- 48 MeV, in symmetric nuclear matter. An equivalent local potential derived from the Wigner transform of the nonlocal Lambda alpha kernel shows a strong energy dependence for the incident Lambda-particle, indicating the importance of the strangeness-exchange process in the original hyperon-nucleon interaction. The Sigma alpha and Xi alpha potentials are repulsive with the attractive isospin I=1/2 (Sigma alpha) and I=0 (Xi alpha) components and the repulsive I=3/2 (Sigma alpha) and I=1 (Xi alpha) components.
93 - C. Beck , et al 2008
Charged particle and gamma decays in light alpha-like nuclei are investigated for 24Mg+12C. Various theoretical predictions for the occurence of superdeformed and hyperdeformed bands associated with resonance structures with low spin are presented. T he inverse kinematics reaction 24Mg+12C is studied at Elab(24Mg) = 130 MeV. Exclusive data were collected with the Binary Reaction Spectrometer in coincidence with EUROBALL IV installed at the VIVITRON Tandem facility at Strasbourg. Specific structures with large deformation were selectively populated in binary reactions and their associated gamma decays studied. Coincident events from $alpha$-transfer channels were selected by choosing the excitation energy or the entry point via the two-body Q-values. The analysis of the binary reaction channels is presented with a particular emphasis on 20Ne-gamma and 16O-gamma coincidences.
We study the structure of $^9_Lambda$Be in the framework of three body $alpha+alpha+Lambda$ cluster model using YNG-NF interaction with the Gaussian expansion method. Employing the complex scaling method, we obtain the energies of bound states as wel l as energies and decay widths of the resonant states. By analyzing our wave functions of bound states and resonant states, we confirm three analogue states of $^9_Lambda$Be pointed out by Band${rm bar{o}}$ and Motoba {it et al.} cite{motoba1983,motoba1985,bando1983}, $^8$Be analogue states, $^9_{Lambda}$Be genuine states and $^9$Be analogue states. The new states of $^9_Lambda$Be are also obtained at a high energy region with broader decay widths.
Different models for the nonlocal description of the nuclear interaction are compared through a study of their effects on the half-lives of radioactive nuclei decaying by the emission of alpha particles. The half-lives are evaluated by considering a pre-formed alpha particle ($^4$He nucleus) which tunnels through the Coulomb barrier generated by its interaction with the daughter nucleus. An effective potential obtained from a density dependent double folding strong potential between the alpha and the daughter nucleus within the nonlocal framework is found to decrease the half-lives as compared to those in the absence of nonlocalities. Whereas the percentage decrease within the older Perey-Buck and S~ao Paulo models ranges between 20 to 40% for medium to heavy nuclei, a recently proposed effective potential leads to a decrease of only 2 - 4 %. In view of these results, we provide a closer examination of the approximations used in deriving the local equivalent potentials and propose that apart from the scattering data, the alpha decay half-lives could be used as a complementary tool for constraining the nonlocality models.
Optical model potentials for elastic nucleon nucleus scattering are calculated for a number of target nuclides from a full-folding integral of two different realistic target density matrices together with full off-shell nucleon-nucleon t-matrices der ived from two different Bonn meson exchange models. Elastic proton and neutron scattering observables calculated from these full-folding optical potentials are compared to those obtained from `optimum factorized approximations in the energy regime between 65 and 400 MeV projectile energy. The optimum factorized form is found to provide a good approximation to elastic scattering observables obtained from the full-folding optical potentials, although the potentials differ somewhat in the structure of their nonlocality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا