ترغب بنشر مسار تعليمي؟ اضغط هنا

Alpha-Cluster States Populated in 24Mg+12C

101   0   0.0 ( 0 )
 نشر من قبل Christian Beck
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف C. Beck - et al




اسأل ChatGPT حول البحث

Charged particle and gamma decays in light alpha-like nuclei are investigated for 24Mg+12C. Various theoretical predictions for the occurence of superdeformed and hyperdeformed bands associated with resonance structures with low spin are presented. The inverse kinematics reaction 24Mg+12C is studied at Elab(24Mg) = 130 MeV. Exclusive data were collected with the Binary Reaction Spectrometer in coincidence with EUROBALL IV installed at the VIVITRON Tandem facility at Strasbourg. Specific structures with large deformation were selectively populated in binary reactions and their associated gamma decays studied. Coincident events from $alpha$-transfer channels were selected by choosing the excitation energy or the entry point via the two-body Q-values. The analysis of the binary reaction channels is presented with a particular emphasis on 20Ne-gamma and 16O-gamma coincidences.



قيم البحث

اقرأ أيضاً

The gamma-decay properties of 24Mg excited states are investigated in the inverse reaction 24Mg+12C at E(24Mg) = 130 MeV. At this energy the direct inelastic scattering populates a 24Mg* energy region where 12C+12C breakup resonances can occur. Very exclusive data were collected with the Binary Reaction Spectrometer (BRS) in coincidence with EUROBALL installed at the VIVITRON Tandem facility of the IReS at Strasbourg. The experimental detection system is decribed and preliminary results of binary reaction coincid data are presented.
The occurence of exotic shapes in light N=Z alpha-like nuclei is investigated for 24Mg+12C and 32S+24Mg. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures with low spin are presented. For b oth reactions, exclusive data were collected with the Binary Reaction Spectrometer in coincidence with EUROBALL IV installed at the VIVITRON Tandem facility of Strasbourg. Specific structures with large deformation were selectively populated in binary reactions and their associated $gamma$-decays studied. The analysis of the binary and ternary reaction channels is discussed.
Charged particle and gamma decays in 24Mg* are investigated for excitation energies where quasimolecular resonances appear in 12C+12C collisions. Various theoretical predictions for the occurence of superdeformed and hyperdeformed bands associated wi th resonance structures with low spin are discussed within the measured 24Mg* excitation energy region. The inverse kinematics reaction 24Mg+12C is studied at E_lab(24Mg) = 130 MeV, an energy which enables the population of 24Mg states decaying into 12C+12C resonant break-up states. Exclusive data were collected with the Binary Reaction Spectrometer in coincidence with EUROBALL IV installed at the VIVITRON Tandem facility at Strasbourg. Specific structures with large deformation were selectively populated in binary reactions and their associated gamma decays studied. Coincident events associated with inelastic and alpha-transfer channels have been selected by choosing the excitation energy or the entry point via the two-body Q-values. The analysis of the binary reaction channels is presented with a particular emphasis on 24Mg-gamma, 20Ne-gamma and 16O-gamma coincidences. New information (spin and branching ratios) is deduced on high-energy states in 24Mg and 16O, respectively.
The possible occurence of highly deformed configurations in the $^{40}$Ca di-nuclear system formed in the $^{28}$Si + $^{12}$C reaction is investigated by analyzing the spectra of emitted light charged particles. Both inclusive and exclusive measurem ents of the heavy fragments (A $geq$ 10) and their associated light charged particles (protons and $alpha$ particles) have been made at the IReS Strasbourg {sc VIVITRON} Tandem facility at bombarding energies of $E_{lab}$ ($^{28}$Si) = 112 MeV and 180 MeV by using the {sc ICARE} charged particle multidetector array. The energy spectra, velocity distributions, in-plane and out-of-plane angular correlations of light charged particles are compared to statistical-model calculations using a consistent set of parameters with spin-dependent level densities. This spin dependence approach suggests the onset of large nuclear deformation in $^{40}$Ca at high spin. This conclusion might be connected with the recent observation of superdeformed bands in the $^{40}$Ca nucleus. The analysis of $alpha$ particles in coincidence with $^{32}$S fragments suggests a surprisingly strong $^{8}$Be cluster emission of a binary nature.
The fragmentation of quasi-projectiles from the nuclear reaction $^{40}Ca$+$^{12}C$ at 25 MeV/nucleon was used to produce excited states candidates to $alpha$-particle condensation. The methodology relies on high granularity 4$pi$ detection coupled t o correlation function techniques. Under the assumption that the equality among the kinetic energies of the emitted $alpha$-particles and the emission simultaneity constitutes a reliable fingerprint of $alpha$ condensation, we identify several tens of events corresponding to the deexcitation of the Hoyle state of $^{12}$C which fulfill the condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا