ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum SDP Solvers: Large Speed-ups, Optimality, and Applications to Quantum Learning

50   0   0.0 ( 0 )
 نشر من قبل Tongyang Li
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

We give two quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with $m$ constraint matrices, each of dimension $n$, rank at most $r$, and sparsity $s$. The first algorithm assumes access to an oracle to the matrices at unit cost. We show that it has run time $tilde{O}(s^2(sqrt{m}epsilon^{-10}+sqrt{n}epsilon^{-12}))$, with $epsilon$ the error of the solution. This gives an optimal dependence in terms of $m, n$ and quadratic improvement over previous quantum algorithms when $mapprox n$. The second algorithm assumes a fully quantum input model in which the matrices are given as quantum states. We show that its run time is $tilde{O}(sqrt{m}+text{poly}(r))cdottext{poly}(log m,log n,B,epsilon^{-1})$, with $B$ an upper bound on the trace-norm of all input matrices. In particular the complexity depends only poly-logarithmically in $n$ and polynomially in $r$. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given $m$ measurements and a supply of copies of an unknown state $rho$ with rank at most $r$, we show we can find in time $sqrt{m}cdottext{poly}(log m,log n,r,epsilon^{-1})$ a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as $rho$ on the $m$ measurements, up to error $epsilon$. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes principle from statistical mechanics. As in previous work, we obtain our algorithm by quantizing classical SDP solvers based on the matrix multiplicative weight method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians with a poly-logarithmic dependence on its dimension, which could be of independent interest.

قيم البحث

اقرأ أيضاً

Brand~ao and Svore very recently gave quantum algorithms for approximately solving semidefinite programs, which in some regimes are faster than the best-possible classical algorithms in terms of the dimension $n$ of the problem and the number $m$ of constraints, but worse in terms of various other parameters. In this paper we improve their algorithms in several ways, getting better dependence on those other parameters. To this end we develop new techniques for quantum algorithms, for instance a general way to efficiently implement smooth functions of sparse Hamiltonians, and a generalized minimum-finding procedure. We also show limits on this approach to quantum SDP-solvers, for instance for combinatorial optimizations problems that have a lot of symmetry. Finally, we prove some general lower bounds showing that in the worst case, the complexity of every quantum LP-solver (and hence also SDP-solver) has to scale linearly with $mn$ when $mapprox n$, which is the same as classical.
Distance to Uncontrollability is a crucial concept in classical control theory. Here, we introduce Quantum Distance to Uncontrollability as a measure how close a universal quantum system is to a non-universal one. This allows us to provide a quantita tive version of the Quantum Speed Limit, decomposing the bound into a geometric and dynamical component. We consider several physical examples including globally controlled solid state qubits and a cross-Kerr system, showing that the Quantum Distance to Uncontrollability provides a precise meaning to spectral crowding, weak interactions and other bottlenecks to universality. We suggest that this measure should be taken into consideration in the design of quantum technology.
This is a pre-publication version of a forthcoming book on quantum atom optics. It is written as a senior undergraduate to junior graduate level textbook, assuming knowledge of basic quantum mechanics, and covers the basic principles of neutral atom matter wave systems with an emphasis on quantum technology applications. The topics covered include: introduction to second quantization of many-body systems, Bose-Einstein condensation, the order parameter and Gross-Pitaevskii equation, spin dynamics of atoms, spinor Bose-Einstein condensates, atom diffraction, atomic interferometry beyond the standard limit, quantum simulation, squeezing and entanglement with atomic ensembles, quantum information with atomic ensembles. This book would suit students who wish to obtain the necessary skills for working with neutral atom many-body atomic systems, or could be used as a text for an undergraduate or graduate level course (exercises are included throughout). This is a near-final draft of the book, but inevitably errors may be present. If any errors are found, we welcome you to contact us and it will be corrected before publication. (TB: tim.byrnes[at]nyu.edu, EI: ebube[at]nyu.edu)
Increasing demand for algorithms that can learn quickly and efficiently has led to a surge of development within the field of artificial intelligence (AI). An important paradigm within AI is reinforcement learning (RL), where agents interact with env ironments by exchanging signals via a communication channel. Agents can learn by updating their behaviour based on obtained feedback. The crucial question for practical applications is how fast agents can learn to respond correctly. An essential figure of merit is therefore the learning time. While various works have made use of quantum mechanics to speed up the agents decision-making process, a reduction in learning time has not been demonstrated yet. Here we present a RL experiment where the learning of an agent is boosted by utilizing a quantum communication channel with the environment. We further show that the combination with classical communication enables the evaluation of such an improvement, and additionally allows for optimal control of the learning progress. This novel scenario is therefore demonstrated by considering hybrid agents, that alternate between rounds of quantum and classical communication. We implement this learning protocol on a compact and fully tunable integrated nanophotonic processor. The device interfaces with telecom-wavelength photons and features a fast active feedback mechanism, allowing us to demonstrate the agents systematic quantum advantage in a setup that could be readily integrated within future large-scale quantum communication networks.
Quantum computers promise to enhance machine learning for practical applications. Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional data. However, conventional methods for measuring quantum kernels are i mpractical for large datasets as they scale with the square of the dataset size. Here, we measure quantum kernels using randomized measurements to gain a quadratic speedup in computation time and quickly process large datasets. Further, we efficiently encode high-dimensional data into quantum computers with the number of features scaling linearly with the circuit depth. The encoding is characterized by the quantum Fisher information metric and is related to the radial basis function kernel. We demonstrate the advantages of our methods by classifying images with the IBM quantum computer. To achieve further speedups we distribute the quantum computational tasks between different quantum computers. Our approach is exceptionally robust to noise via a complementary error mitigation scheme. Using currently available quantum computers, the MNIST database can be processed within 220 hours instead of 10 years which opens up industrial applications of quantum machine learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا