ﻻ يوجد ملخص باللغة العربية
We develop a Split Reactive Brownian Dynamics (SRBD) algorithm for particle simulations of reaction-diffusion systems based on the Doi or volume reactivity model, in which pairs of particles react with a specified Poisson rate if they are closer than a chosen reactive distance. In our Doi model, we ensure that the microscopic reaction rules for various association and disassociation reactions are consistent with detailed balance (time reversibility) at thermodynamic equilibrium. The SRBD algorithm uses Strang splitting in time to separate reaction and diffusion, and solves both the diffusion-only and reaction-only subproblems exactly, even at high packing densities. To efficiently process reactions without uncontrolled approximations, SRBD employs an event-driven algorithm that processes reactions in a time-ordered sequence over the duration of the time step. A grid of cells with size larger than all of the reactive distances is used to schedule and process the reactions, but unlike traditional grid-based methods such as Reaction-Diffusion Master Equation (RDME) algorithms, the results of SRBD are statistically independent of the size of the grid used to accelerate the processing of reactions. We use the SRBD algorithm to compute the effective macroscopic reaction rate for both reaction- and diffusion-limited irreversible association in three dimensions. We also study long-time tails in the time correlation functions for reversible association at thermodynamic equilibrium. Finally, we compare different particle and continuum methods on a model exhibiting a Turing-like instability and pattern formation. We find that for models in which particles diffuse off lattice, such as the Doi model, reactions lead to a spurious enhancement of the effective diffusion coefficients.
A framework for performant Brownian Dynamics (BD) many-body simulations with adaptive timestepping is presented. Contrary to the Euler-Maruyama scheme in common non-adaptive BD, we employ an embedded Heun-Euler integrator for the propagation of the o
The disordering of an initially phase segregated system of finite size, induced by the presence of highly mobile vacancies, is shown to exhibit dynamic scaling in its late stages. A set of characteristic exponents is introduced and computed analyti
Exact quantum master equation for a driven Brownian oscillator system is constructed via a Wigner phase-space Gaussian wave packet approach. The interplay between external field and dissipation leads to this system an effective field correction that
We endow a system of interacting particles with two distinct, local, Markovian and reversible microscopic dynamics. Using common field-theoretic techniques used to investigate the presence of a glass transition, we find that while the first, standard
A number of random processes in various fields of science is described by phenomenological equations containing a stochastic force, the best known example being the Langevin equation (LE) for the Brownian motion (BM) of particles. Long ago Vladimirsk