ﻻ يوجد ملخص باللغة العربية
We endow a system of interacting particles with two distinct, local, Markovian and reversible microscopic dynamics. Using common field-theoretic techniques used to investigate the presence of a glass transition, we find that while the first, standard, dynamical rules lead to glassy behavior, the other one leads to a simple exponential relaxation towards equilibrium. This finding questions the intrinsic link that exists between the underlying, thermodynamical, energy landscape, and the dynamical rules with which this landscape is explored by the system. Our peculiar choice of dynam- ical rules offers the possibility of a direct connection with replica theory, and our findings therefore call for a clarification of the interplay between replica theory and the underlying dynamics of the system.
It is shown that the limit $t-ttoinfty$ of the equilibrium dynamic self-energy can be computed from the $nto 1$ limit of the static self-energy of a $n$-times replicated system with one step replica symmetry breaking structure. It is also shown that
We discuss the slow relaxation phenomenon in glassy systems by means of replicas by constructing a static field theory approach to the problem. At the mean field level we study how criticality in the four point correlation functions arises because of
We present a theoretical discussion of the reversible parking problem, which appears to be one of the simplest systems exhibiting glassy behavior. The existence of slow relaxation, nontrivial fluctuations, and an annealing effect can all be understoo
We present the study of the landscape structure of athermal soft spheres both as a function of the packing fraction and of the energy. We find that, on approaching the jamming transition, the number of different configurations available to the system
We find the exact winding number distribution of Riemann-Liouville fractional Brownian motion for large times in two dimensions using the propagator of a free particle. The distribution is similar to the Brownian motion case and it is of Cauchy type.