ﻻ يوجد ملخص باللغة العربية
We study the character variety of representations of the fundamental group of a closed surface of genus $ggeq2$ into the Lie group SO(n,n+1) using Higgs bundles. For each integer $0<dleq n(2g-2),$ we show there is a smooth connected component of the character variety which is diffeomorphic to the product of a certain vector bundle over a symmetric product of a Riemann surface with the vector space of holomorphic differentials of degree 2,4,...,2n-2. In particular, when d=n(2g-2), this recovers Hitchins parameterization of the Hitchin component. We also exhibit $2^{2g+1}-1$ additional connected components of the SO(n,n+1)-character variety and compute their topology. Moreover, representations in all of these new components cannot be continuously deformed to representations with compact Zariski closure. Using recent work of Guichard and Wienhard on positivity, it is shown that each of the representations which define singularities (i.e. those which are not irreducible) in these $2^{2g+1}-1$ connected components are positive Anosov representations.
In this paper, we study the geometric and dynamical properties of maximal representations of surface groups into Hermitian Lie groups of rank 2. Combining tools from Higgs bundle theory, the theory of Anosov representations, and pseudo-Riemannian geo
Recall that the group $PSL(2,mathbb R)$ is isomorphic to $PSp(2,mathbb R), SO_0(1,2)$ and $PU(1,1).$ The goal of this paper is to examine the various ways in which Fuchsian representations of the fundamental group of a closed surface of genus $g$ int
We show that for every nonelementary representation of a surface group into $SL(2,{mathbb C})$ there is a Riemann surface structure such that the Higgs bundle associated to the representation lies outside the discriminant locus of the Hitchin fibration.
We give a description of the centralizer algebras for tensor powers of spin objects in the pre-modular categories $SO(N)_2$ (for $N$ odd) and $O(N)_2$ (for $N$ even) in terms of quantum $(n-1)$-tori, via non-standard deformations of $Umathfrak{so}_N$
Let $S$ be a closed surface of genus at least $2$. For each maximal representation $rho: pi_1(S)rightarrowmathsf{Sp}(4,mathbb{R})$ in one of the $2g-3$ exceptional connected components, we prove there is a unique conformal structure on the surface in