ﻻ يوجد ملخص باللغة العربية
In this paper, we study the geometric and dynamical properties of maximal representations of surface groups into Hermitian Lie groups of rank 2. Combining tools from Higgs bundle theory, the theory of Anosov representations, and pseudo-Riemannian geometry, we obtain various results of interest. We prove that these representations are holonomies of certain geometric structures, recovering results of Guichard and Wienhard. We also prove that their length spectrum is uniformly bigger than that of a suitably chosen Fuchsian representation, extending a previous work of the second author. Finally, we show that these representations preserve a unique minimal surface in the symmetric space, extending a theorem of Labourie for Hitchin representations in rank 2.
We study the character variety of representations of the fundamental group of a closed surface of genus $ggeq2$ into the Lie group SO(n,n+1) using Higgs bundles. For each integer $0<dleq n(2g-2),$ we show there is a smooth connected component of the
Let $S$ be a closed surface of genus at least $2$. For each maximal representation $rho: pi_1(S)rightarrowmathsf{Sp}(4,mathbb{R})$ in one of the $2g-3$ exceptional connected components, we prove there is a unique conformal structure on the surface in
We introduce and study a new class of representations of surface groups into Lie groups of Hermitian type, called weakly maximal representations. They are defined in terms of invariants in bounded cohomology and extend considerably the scope of maxim
In arXiv:1802.02833 Guichard and Wienhard introduced the notion of $Theta$-positivity, a generalization of Lusztigs total positivity to real Lie groups that are not necessarily split. Based on this notion, we introduce in this paper $Theta$-positive
Following the work of Burger, Iozzi and Wienhard for representations, in this paper we introduce the notion of maximal measurable cocycles of a surface group. More precisely, let $mathbf{G}$ be a semisimple algebraic $mathbb{R}$-group such that $G=ma