ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast Molecular Transport on Carbon Surfaces: The Diffusion of Ammonia on Graphite

83   0   0.0 ( 0 )
 نشر من قبل Anton Tamt\\\"ogl
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combined experimental and theoretical study of the self-diffusion of ammonia on exfoliated graphite. Using neutron time-of-flight spectroscopy we are able to resolve the ultrafast diffusion process of adsorbed ammonia, NH$_3$, on graphite. Together with van der Waals corrected density functional theory calculations we show that the diffusion of NH$_3$ follows a hopping motion on a weakly corrugated potential energy surface with an activation energy of about 4 meV which is particularly low for this type of diffusive motion. The hopping motion includes further a significant number of long jumps and the diffusion constant of ammonia adsorbed on graphite is determined with $D=3.9 cdot 10^{-8}~mbox{m}^2 /mbox{s}$ at 94 K.

قيم البحث

اقرأ أيضاً

A wetting transition occurs when the contact angle of a liquid drop on a surface changes from a nonzero value to zero. Such a transition has never been observed for water on any solid surface. This paper discusses the value of the temperature T_w at which the transition should occur for water on graphite. A simple model, previously used for nonpolar fluids, predicts the value of $T_w$ as a function of the well-depth D of the adsorption potential. While $D$ is not well known for the case of water/graphite, the model implies that T_w is likely to fall in the range 350 to 500 K. Experimental search for this transition is warranted. Water wetting transition temperatures on other surfaces are also discussed.
60 - J. Heinonen 1999
We present Monte Carlo simulations for the size and temperature dependence of the diffusion coefficient of adatom islands on the Cu(100) surface. We show that the scaling exponent for the size dependence is not a constant but a decreasing function of the island size and approaches unity for very large islands. This is due to a crossover from periphery dominated mass transport to a regime where vacancies diffuse inside the island. The effective scaling exponents are in good agreement with theory and experiments.
The 2D Fermi surface of 1st stage PdAl2Cl8 acceptor-type graphite intercalation compounds (GICs) has been investigated using the Shubnikov-de Haas (SdH) effect. One fundamental frequency is observed, the angular variation of which confirms its strong ly 2D nature, as previously found through electrical conductivity measurements. The energy spectrum can be described by the 2D band structure model proposed by Blinowski et al. We obtain the following parameter values: intraplane C-C interaction energy gamma_0 = 2.7 eV, Fermi energy E_F = -1.1 eV and carrier density n_SdH= 1.1x10^27 m^-3. Some fewer details are presented on stage 2 and 3 materials.
Time-resolved vibrational spectroscopy constitutes an invaluable experimental tool for monitoring hot-carrier induced surface reactions. However, the absence of a full understanding on the precise microscopic mechanisms causing the transient spectral changes has been limiting its applicability. Here we introduce a robust first-principles theoretical framework that successfully explains both the nonthermal frequency and linewidth changes of the CO internal stretch mode on Cu(100) induced by femtosecond laser pulses. Two distinct processes engender the changes: electron-hole pair excitations underlie the nonthermal frequency shifts, while electron-mediated vibrational mode coupling gives rise to linewidth changes. Furthermore, the origin and precise sequence of coupling events are finally identified.
We report the structural and optical properties of molecular beam epitaxy (MBE) grown 2-dimensional (2D) material molybdenum diselenide (MoSe2) on graphite, CaF2 and epitaxial graphene. Extensive characterizations reveal that 2H- MoSe2 grows by van-d er-Waals epitaxy on all 3 substrates with a preferred crystallographic orientation and a Mo:Se ratio of 1:2. Photoluminescence at room temperature (~1.56 eV) is observed in monolayer MoSe2 on both CaF2 and epitaxial graphene. The band edge absorption is very sharp, <60 meV over 3 decades. Overcoming the observed small grains by promoting mobility of Mo atoms would make MBE a powerful technique to achieve high quality 2D materials and heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا