ترغب بنشر مسار تعليمي؟ اضغط هنا

Filling functions of arithmetic groups

56   0   0.0 ( 0 )
 نشر من قبل Robert Young
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Dehn function and its higher-dimensional generalizations measure the difficulty of filling a sphere in a space by a ball. In nonpositively curved spaces, one can construct fillings using geodesics, but fillings become more complicated in subsets of nonpositively curved spaces, such as lattices in symmetric spaces. In this paper, we prove sharp filling inequalities for (arithmetic) lattices in higher rank semisimple Lie groups. When $n$ is less than the rank of the associated symmetric space, we show that the $n$-dimensional filling volume function of the lattice grows at the same rate as that of the associated symmetric space, and when $n$ is equal to the rank, we show that the $n$-dimensional filling volume function grows exponentially. This broadly generalizes a theorem of Lubotzky-Mozes-Raghunathan on length distortion in lattices and confirms conjectures of Thurston, Gromov, and Bux-Wortman.

قيم البحث

اقرأ أيضاً

109 - Alexander N. Skiba 2020
Let $G$ be a finite group and $sigma$ a partition of the set of all? primes $Bbb{P}$, that is, $sigma ={sigma_i mid iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_i$ and $sigma_icap sigma_j= emptyset $ for all $i e j$. If $n$ is an integer, we write $s igma(n)={sigma_i mid sigma_{i}cap pi (n) e emptyset }$ and $sigma (G)=sigma (|G|)$. We call a graph $Gamma$ with the set of all vertices $V(Gamma)=sigma (G)$ ($G e 1$) a $sigma$-arithmetic graph of $G$, and we associate with $G e 1$ the following three directed $sigma$-arithmetic graphs: (1) the $sigma$-Hawkes graph $Gamma_{Hsigma }(G)$ of $G$ is a $sigma$-arithmetic graph of $G$ in which $(sigma_i, sigma_j)in E(Gamma_{Hsigma }(G))$ if $sigma_jin sigma (G/F_{{sigma_i}}(G))$; (2) the $sigma$-Hall graph $Gamma_{sigma Hal}(G)$ of $G$ in which $(sigma_i, sigma_j)in E(Gamma_{sigma Hal}(G))$ if for some Hall $sigma_i$-subgroup $H$ of $G$ we have $sigma_jin sigma (N_{G}(H)/HC_{G}(H))$; (3) the $sigma$-Vasilev-Murashko graph $Gamma_{{mathfrak{N}_sigma }}(G)$ of $G$ in which $(sigma_i, sigma_j)in E(Gamma_{{mathfrak{N}_sigma}}(G))$ if for some ${mathfrak{N}_{sigma }}$-critical subgroup $H$ of $G$ we have $sigma_i in sigma (H)$ and $sigma_jin sigma (H/F_{{sigma_i}}(H))$. In this paper, we study the structure of $G$ depending on the properties of these three graphs of $G$.
Fixing an arithmetic lattice $Gamma$ in an algebraic group $G$, the commensurability growth function assigns to each $n$ the cardinality of the set of subgroups $Delta$ with $[Gamma : Gamma cap Delta] [Delta: Gamma cap Delta] = n$. This growth functi on gives a new setting where methods of F. Grunewald, D. Segal, and G. C. Smiths Subgroups of finite index in nilpotent groups apply to study arithmetic lattices in an algebraic group. In particular, we show that for any unipotent algebraic $mathbb{Z}$-group with arithmetic lattice $Gamma$, the Dirichlet function associated to the commensurability growth function satisfies an Euler decomposition. Moreover, the local parts are rational functions in $p^{-s}$, where the degrees of the numerator and denominator are independent of $p$. This gives regularity results for the set of arithmetic lattices in $G$.
For $n > 2$, let $Gamma$ denote either $SL(n, Z)$ or $Sp(n, Z)$. We give a practical algorithm to compute the level of the maximal principal congruence subgroup in an arithmetic group $Hleq Gamma$. This forms the main component of our methods for com puting with such arithmetic groups $H$. More generally, we provide algorithms for computing with Zariski dense groups in $Gamma$. We use our GAP implementation of the algorithms to solve problems that have emerged recently for important classes of linear groups.
We establish lower bounds on the dimensions in which arithmetic groups with torsion can act on acyclic manifolds and homology spheres. The bounds rely on the existence of elementary p-groups in the groups concerned. In some cases, including Sp(2n,Z), the bounds we obtain are sharp: if X is a generalized Z/3-homology sphere of dimension less than 2n-1 or a Z/3-acyclic Z/3-homology manifold of dimension less than 2n, and if n geq 3, then any action of Sp(2n,Z) by homeomorphisms on X is trivial; if n = 2, then every action of Sp(2n,Z) on X factors through the abelianization of Sp(4,Z), which is Z/2.
Let $Gamma$ be an irreducible lattice in a product of n infinite irreducible complete Kac-Moody groups of simply laced type over finite fields. We show that if n is at least 3, then each Kac-Moody groups is in fact a simple algebraic group over a loc al field and $Gamma$ is an arithmetic lattice. This relies on the following alternative which is satisfied by any irreducible lattice provided n is at least 2: either $Gamma$ is an S-arithmetic (hence linear) group, or it is not residually finite. In that case, it is even virtually simple when the ground field is large enough. More general CAT(0) groups are also considered throughout.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا