ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous magnetotransport properties of high-quality single crystals of Weyl semimetal WTe2: Sign change of Hall resistivity

396   0   0.0 ( 0 )
 نشر من قبل Rajveer Jha Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a systematic study of Hall effect using high quality single crystals of type-II Weyl semimetal WTe2 with the applied magnetic field B//c. The residual resistivity ratio of 1330 and the large magnetoresistance of 1.5times10^6 % in 9 T at 2 K, being in the highest class in the literature, attest to their high quality. Based on a simple two-band model, the densities (n_e and n_h) and mobilities (mu_e and mu_h) for electron and hole carriers have been uniquely determined combining both Hall- and electrical-resistivity data. The difference between ne and nh is ~1% at 2 K, indicating that the system is in an almost compensated condition. The negative Hall resistivity growing rapidly below ~20 K is due to a rapidly increasing mu_h/mu_e approaching one. Below 3 K in a low field region, we found the Hall resistivity becomes positive, reflecting that mu_h/mu_e finally exceeds one in this region. These anomalous behaviors of the carrier densities and mobilities might be associated with the existence of a Lifshitz transition and/or the spin texture on the Fermi surface.

قيم البحث

اقرأ أيضاً

Using Hall photovoltage measurements, we demonstrate that an anomalous Hall-voltage can be induced in few layer WTe2 under circularly polarized light illumination. By applying a bias voltage along different crystal axes, we find that the photo-induce d anomalous Hall conductivity coincides with a particular crystal axis. Our results are consistent with the underlying Berry-curvature exhibiting a dipolar distribution due to the breaking of crystal inversion symmetry. Using a time-resolved optoelectronic auto-correlation spectroscopy, we find that the decay time of the anomalous Hall voltage exceeds the electron-phonon scattering time by orders of magnitude but is consistent with the comparatively long spin-lifetime of carriers in the momentum-indirect electron and hole pockets in WTe2. Our observation suggests, that a helical modulation of an otherwise isotropic spin-current is the underlying mechanism of the anomalous Hall effect.
A developing frontier in condensed matter physics is the emergence of novel electromagnetic responses, such as topological and anomalous Hall effect (AHE), in ferromagnetic Weyl semimetals (FM-WSMs). Candidates of FM-WSM are limited to materials that preserve inversion symmetry and generate Weyl crossings by breaking time-reversal symmetry. These materials share three common features: a centrosymmetric lattice, a collinear FM ordering, and a large AHE observed when the field is parallel to the magnetic easy-axis. Here, we present CeAlSi as a new type of FM-WSM, where the Weyl nodes are stabilized by breaking inversion symmetry, but their positions are tuned by breaking time-reversal symmetry. Unlike the other FM-WSMs, CeAlSi has a noncentrosymmetric lattice, a noncollinear FM ordering, and a novel AHE that is anisotropic between the easy- and hard-axes. It also exhibits large FM domains that are promising for both device applications and an interplay between the Weyl nodes and FM domain walls.
131 - D. Chen , L. X. Zhao , J. B. He 2016
We have investigated the magnetoresistance (MR) and Hall resistivity properties of the single crystals of tantalum sulfide, Ta3S2, which was recently predicted to be a new type II Weyl semimetal. Large MR (up to ~8000% at 2 K and 16 T), field-induced metal-insulator-like transition and nonlinear Hall resistivity are observed at low temperatures. The large MR shows a strong dependence on the field orientation, leading to a giant anisotropic magnetoresistance (AMR) effect. For the field applied along the b-axis (B//b), MR exhibits quadratic field dependence at low fields and tends towards saturation at high fields; while for B//a, MR presents quadratic field dependence at low fields and becomes linear at high fields without any trend towards saturation. The analysis of the Hall resistivity data indicates the coexistence of a large number of electrons with low mobility and a small number of holes with high mobility. Shubnikov-de Haas (SdH) oscillation analysis reveals three fundamental frequencies originated from the three-dimensional (3D) Fermi surface (FS) pockets. We find that the semi-classical multiband model is sufficient to account for the experimentally observed MR in Ta3S2.
We propose a new topological quantum state of matter---the two-dimensional (2D) Weyl half semimetal (WHS), which features 2D Weyl points at Fermi level belonging to a single spin channel, such that the low-energy electrons are described by fully spin -polarized 2D Weyl fermions. We predict its realization in the ground state of monolayer PtCl$_3$. We show that the material is a half metal with an in-plane magnetization, and its Fermi surface consists of a pair of fully spin-polarized Weyl points protected by a mirror symmetry, which are robust against spin-orbit coupling. Remarkably, we show that the WHS state is a critical state at the topological phase transition between two quantum anomalous Hall insulator phases with opposite Chern numbers, such that a switching between quantum anomalous Hall states can be readily achieved by rotating the magnetization direction. Our findings demonstrate that WHS offers new opportunity to control the chiral edge channels, which will be useful for designing new topological electronic devices.
The ordinary Hall effect refers to generation of a transverse voltage upon exertion of an electric field in the presence of an out-of-plane magnetic field. While a linear Hall effect is commonly observed in systems with breaking time-reversal symmetr y via an applied external magnetic field or their intrinsic magnetization1, 2, a nonlinear Hall effect can generically occur in non-magnetic systems associated with a nonvanishing Berry curvature dipole3. Here we report, observations of a nonlinear optical Hall effect in a Weyl semimetal WTe2 without an applied magnetic field at room temperature. We observe an optical Hall effect resulting in a polarization rotation of the reflected light, referred to as the nonlinear Kerr rotation. The nonlinear Kerr rotation linearly depends on the charge current and optical power, which manifests the fourth-order nonlinearity. We quantitatively determine the fourth-order susceptibility, which exhibits strong anisotropy depending on the directions of the charge current and the light polarization. Employing symmetry analysis of Berry curvature multipoles, we demonstrate that the nonlinear Kerr rotations can arise from the Berry curvature hexapole allowed by the crystalline symmetries of WTe2. There also exist marginal signals that are incompatible with the symmetries, which suggest a hidden phase associated with the nonlinear process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا