ﻻ يوجد ملخص باللغة العربية
Evaluation and validation of complicated control systems are crucial to guarantee usability and safety. Usually, failure happens in some very rarely encountered situations, but once triggered, the consequence is disastrous. Accelerated Evaluation is a methodology that efficiently tests those rarely-occurring yet critical failures via smartly-sampled test cases. The distribution used in sampling is pivotal to the performance of the method, but building a suitable distribution requires case-by-case analysis. This paper proposes a versatile approach for constructing sampling distribution using kernel method. The approach uses statistical learning tools to approximate the critical event sets and constructs distributions based on the unique properties of Gaussian distributions. We applied the method to evaluate the automated vehicles. Numerical experiments show proposed approach can robustly identify the rare failures and significantly reduce the evaluation time.
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment, typically leading to arbitrary deductions and poorly-informed decisions. In principle, detection of and adaptation to OOD scenes can mitigate their
In this paper, we present ViSTA, a framework for Virtual Scenario-based Testing of Autonomous Vehicles (AV), developed as part of the 2021 IEEE Autonomous Test Driving AI Test Challenge. Scenario-based virtual testing aims to construct specific chall
We study an adaptive source seeking problem, in which a mobile robot must identify the strongest emitter(s) of a signal in an environment with background emissions. Background signals may be highly heterogeneous and can mislead algorithms that are ba
Although deep reinforcement learning (deep RL) methods have lots of strengths that are favorable if applied to autonomous driving, real deep RL applications in autonomous driving have been slowed down by the modeling gap between the source (training)
Recent advances in supervised learning and reinforcement learning have provided new opportunities to apply related methodologies to automated driving. However, there are still challenges to achieve automated driving maneuvers in dynamically changing