ﻻ يوجد ملخص باللغة العربية
The recent discovery of fast transient events near critical curves of massive galaxy clusters, which are interpreted as highly magnified individual stars in giant arcs due to caustic crossing, opens up the possibility of using such microlensing events to constrain a range of dark matter models such as primordial black holes and scalar field dark matter. Based on a simple analytic model, we study lensing properties of a point mass lens embedded in a high magnification region, and derive the dependence of the peak brightness, microlensing time scales, and event rates on the mass of the point mass lens as well as the radius of a source star that is magnified. We find that the lens mass and source radius of the first event MACS J1149 Lensed Star 1 (LS1) are constrained, with the lens mass range of $0.1~M_odot lesssim M lesssim 4times 10^3M_odot$ and the source radius range of $40~R_odot lesssim R lesssim 260~R_odot$. In the most plausible case with $Mapprox 0.3~M_odot$ and $Rapprox 180~R_odot$, the source star should have been magnified by a factor of $approx 4300$ at the peak. The derived lens properties are fully consistent with the interpretation that MACS J1149 LS1 is a microlensing event produced by a star that contributes to the intra-cluster light. We argue that compact dark matter models with high fractional mass densities for the mass range $10^{-5}M_odot lesssim Mlesssim 10^2M_odot$ are inconsistent with the observation of MACS J1149 LS1 because such models predict too low magnifications. Our work demonstrates a potential use of caustic crossing events in giant arcs to constrain compact dark matter.
A galaxy cluster acts as a cosmic telescope over background galaxies but also as a cosmic microscope of the lens imperfections. The diverging magnification of lensing caustics enhances the microlensing effect of substructure present within the lensin
Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these inte
It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results
We revise the cosmological phenomenology of Macroscopic Dark Matter (MDM) candidates, also commonly dubbed as Macros. A possible signature of MDM is the capture of baryons from the cosmological plasma in the pre-recombination epoch, with the conseque
The increasingly significant tensions within $Lambda$CDM, combined with the lack of detection of dark matter (DM) in laboratory experiments, have boosted interest in non-minimal dark sectors, which are theoretically well-motivated and inspire new sea