ﻻ يوجد ملخص باللغة العربية
It has been suggested that dark matter particles which scatter inelastically from detector target nuclei could explain the apparent incompatibility of the DAMA modulation signal (interpreted as evidence for particle dark matter) with the null results from CDMS-II and XENON10. Among the predictions of inelastically interacting dark matter are a suppression of low-energy events, and a population of nuclear recoil events at higher nuclear recoil equivalent energies. This is in stark contrast to the well-known expectation of a falling exponential spectrum for the case of elastic interactions. We present a new analysis of XENON10 dark matter search data extending to E$_{nr}=75$ keV nuclear recoil equivalent energy. Our results exclude a significant region of previously allowed parameter space in the model of inelastically interacting dark matter. In particular, it is found that dark matter particle masses $m_{chi}gtrsim150$ GeV are disfavored.
We report results of a search for light (<10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Conside
Recently it has been claimed that the warm dark matter (WDM) model cannot at the same time reproduce the observed Lyman-{alpha} forests in distant quasar spectra and solve the small-scale issues in the cold dark matter (CDM) model. As an alternative
There has been an increasing interest on the concept of Inelastic Dark Matter (iDM) - motivated in part by some recent data. We describe the constraints on iDM from the results of the two phase dark matter detector ZEPLIN-II, which has demonstrated s
Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these inte
We revise the cosmological phenomenology of Macroscopic Dark Matter (MDM) candidates, also commonly dubbed as Macros. A possible signature of MDM is the capture of baryons from the cosmological plasma in the pre-recombination epoch, with the conseque