ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical follow-up observation for GW event S190510g using Subaru/Hyper Suprime-Cam

230   0   0.0 ( 0 )
 نشر من قبل Takayuki Ohgami
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A gravitational wave event, S190510g, which was classified as a binary-neutron-star coalescence at the time of preliminary alert, was detected by LIGO/Virgo collaboration on May 10, 2019. At 1.7 hours after the issue of its preliminary alert, we started a target-of-opportunity imaging observation in Y-band to search for its optical counterpart using the Hyper Suprime-Cam (HSC) on the Subaru Telescope. The observation covers a 118.8 deg$^2$ sky area corresponding to 11.6% confidence in the localization skymap released in the preliminary alert and 1.2% in the updated skymap. We divided the observed area into two fields based on the availability of HSC reference images. For the fields with the HSC reference images, we applied an image subtraction technique; for the fields without the HSC reference images, we sought individual HSC images by matching a catalog of observed objects with the PS1 catalog. The search depth is 22.28 mag in the former method and the limit of search depth is 21.3 mag in the latter method. Subsequently, we performed visual inspection and obtained 83 candidates using the former method and 50 candidates using the latter method. Since we have only the 1-day photometric data, we evaluated probability to be located inside the 3D skymap by estimating their distances with photometry of associated extended objects. We found three candidates are likely located inside the 3D skymap and concluded they could be an counterpart of S190510g, while most of 133 candidates were likely to be supernovae because the number density of candidates was consistent with the expected number of supernova detections. By comparing our observational depth with a light curve model of such a kilonova reproducing AT2017gfo, we show that early-deep observations with the Subaru/HSC can capture the rising phase of blue component of kilonova at the estimated distance of S190510g (~230 Mpc).



قيم البحث

اقرأ أيضاً

We perform a $z$-band survey for an optical counterpart of a binary neutron star coalescence GW170817 with Subaru/Hyper Suprime-Cam. Our untargeted transient search covers $23.6$ deg$^2$ corresponding to the $56.6%$ credible region of GW170817 and re aches the $50%$ completeness magnitude of $20.6$ mag on average. As a result, we find 60 candidates of extragalactic transients, including J-GEM17btc (a.k.a. SSS17a/DLT17ck). While J-GEM17btc is associated with NGC 4993 that is firmly located inside the 3D skymap of GW170817, the other 59 candidates do not have distance information in the GLADE v2 catalog or NASA/IPAC Extragalactic Database (NED). Among 59 candidates, 58 are located at the center of extended objects in the Pan-STARRS1 catalog, while one candidate has an offset. We present location, $z$-band apparent magnitude, and time variability of the candidates and evaluate the probabilities that they are located inside of the 3D skymap of GW170817. The probability for J-GEM17btc is $64%$ being much higher than those for the other 59 candidates ($9.3times10^{-3}-2.1times10^{-1}%$). Furthermore, the possibility, that at least one of the other 59 candidates is located within the 3D skymap, is only $3.2%$. Therefore, we conclude that J-GEM17btc is the most-likely and distinguished candidate as the optical counterpart of GW170817.
We perform a high-cadence transient survey with Subaru Hyper Suprime-Cam (HSC), which we call the Subaru HSC survey Optimized for Optical Transients (SHOOT). We conduct HSC imaging observations with time intervals of about one hour on two successive nights, and spectroscopic and photometric follow-up observations. A rapidly declining blue transient SHOOT14di at $z=0.4229$ is found in observations on two successive nights with an image subtraction technique. The rate of brightness change is $+1.28^{+0.40}_{-0.27}~{rm mag~day^{-1}}$ ($+1.83^{+0.57}_{-0.39}~{rm mag~day^{-1}}$) in the observer (rest) frame and the rest-frame color between $3400$ and $4400~unicode[.8,0]{x212B}$ is $M_{rm 3400unicode[.8,0]{x212B}}-M_{rm 4400unicode[.8,0]{x212B}}=-0.4$. The nature of the object is investigated by comparing its peak luminosity, decline rate, and color with those of transients and variables previously observed, and those of theoretical models. None of the transients or variables share the same properties as SHOOT14di. Comparisons with theoretical models demonstrate that, while the emission from the cooling envelope of a Type IIb supernova shows a slower decline rate than SHOOT14di, and the explosion of a red supergiant star with a dense circumstellar wind shows a redder color than SHOOT14di, the shock breakout at the stellar surface of the explosion of a $25M_{odot}$ red supergiant star with a small explosion energy of $leq0.4times10^{51}$ erg reproduces the multicolor light curve of SHOOT14di. This discovery shows that a high-cadence, multicolor optical transient survey at intervals of about one hour, and continuous and immediate follow-up observations, is important for studies of normal core-collapse supernovae at high redshifts.
We present rapidly rising transients discovered by a high-cadence transient survey with Subaru telescope and Hyper Suprime-Cam. We discovered five transients at z=0.384-0.821 showing the rising rate faster than 1 mag per 1 day in the restframe near-u ltraviolet wavelengths. The fast rising rate and brightness are the most similar to SN 2010aq and PS1-13arp, for which the ultraviolet emission within a few days after the shock breakout was detected. The lower limit of the event rate of rapidly rising transients is ~9 % of core-collapse supernova rates, assuming a duration of rapid rise to be 1 day. We show that the light curves of the three faint objects agree with the cooling envelope emission from the explosion of red supergiants. The other two luminous objects are, however, brighter and faster than the cooling envelope emission. We interpret these two objects to be the shock breakout from dense wind with the mass loss rate of ~10^{-3} Msun yr^{-1}, as also proposed for PS1-13arp. This mass loss rate is higher than that typically observed for red supergiants. The event rate of these luminous objects is >~1 % of core-collapse supernova rate, and thus, our study implies that more than ~1 % of massive stars can experience an intensive mass loss at a few years before the explosion.
Photometric redshifts are a key component of many science objectives in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). In this paper, we describe and compare the codes used to compute photometric redshifts for HSC-SSP, how we calibrate the m, and the typical accuracy we achieve with the HSC five-band photometry (grizy). We introduce a new point estimator based on an improved loss function and demonstrate that it works better than other commonly used estimators. We find that our photo-zs are most accurate at 0.2<~zphot<~1.5, where we can straddle the 4000A break. We achieve sigma(d_zphot/(1+zphot))~0.05 and an outlier rate of about 15% for galaxies down to i=25 within this redshift range. If we limit to a brighter sample of i<24, we achieve sigma~0.04 and ~8% outliers. Our photo-zs should thus enable many science cases for HSC-SSP. We also characterize the accuracy of our redshift probability distribution function (PDF) and discover that some codes over/under-estimate the redshift uncertainties, which have implications for N(z) reconstruction. Our photo-z products for the entire area in the Public Data Release 1 are publicly available, and both our catalog products (such as point estimates) and full PDFs can be retrieved from the data release site, https://hsc-release.mtk.nao.ac.jp/.
This paper presents the second data release of the Hyper Suprime-Cam Subaru Strategic Program, a wide-field optical imaging survey on the 8.2 meter Subaru Telescope. The release includes data from 174 nights of observation through January 2018. The W ide layer data cover about 300 deg^2 in all five broadband filters (grizy) to the nominal survey exposure (10min in gr and 20min in izy). Partially observed areas are also included in the release; about 1100 deg^2 is observed in at least one filter and one exposure. The median seeing in the i-band is 0.6 arcsec, demonstrating the superb image quality of the survey. The Deep (26 deg^2) and UltraDeep (4 deg^2) data are jointly processed and the UltraDeep-COSMOS field reaches an unprecedented depth of i~28 at 5 sigma for point sources. In addition to the broad-bands, narrow-band data are also available in the Deep and UltraDeep fields. This release includes a major update to the processing pipeline, including improved sky subtraction, PSF modeling, object detection, and artifact rejection. The overall data quality has been improved, but this release is not without problems; there is a persistent deblender problem as well as new issues with masks around bright stars. The user is encouraged to review the issue list before utilizing the data for scientific explorations. All the image products as well as catalog products are available for download. The catalogs are also loaded to a database, which provides an easy interface for users to retrieve data for objects of interest. In addition to these main data products, detailed galaxy shape measurements withheld from the Public Data Release 1 (PDR1) are now available to the community. The shape catalog is drawn from the S16A internal release, which has a larger area than PDR1 (160 deg^2). All products are available at the data release site, https://hsc-release.mtk.nao.ac.jp/.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا