ترغب بنشر مسار تعليمي؟ اضغط هنا

Singlet vs Nonsinglet Perturbative Renormalization factors of Staggered Fermion Bilinears

63   0   0.0 ( 0 )
 نشر من قبل Gregoris Spanoudes
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present the perturbative computation of the difference between the renormalization factors of flavor singlet ($sum_fbarpsi_fGammapsi_f$, $f$: flavor index) and nonsinglet ($barpsi_{f_1} Gamma psi_{f_2}, f_1 eq f_2$) bilinear quark operators (where $Gamma = mathbb{1},,gamma_5,,gamma_{mu},,gamma_5,gamma_{mu},, gamma_5,sigma_{mu, u}$) on the lattice. The computation is performed to two loops and to lowest order in the lattice spacing, using Symanzik improved gluons and staggered fermions with twice stout-smeared links. The stout smearing procedure is also applied to the definition of bilinear operators. A significant part of this work is the development of a method for treating some new peculiar divergent integrals stemming from the staggered formalism. Our results can be combined with precise simulation results for the renormalization factors of the nonsinglet operators, in order to obtain an estimate of the renormalization factors for the singlet operators. The results have been published in Physical Review D.

قيم البحث

اقرأ أيضاً

We apply non-perturbative renormalization to bilinears composed of improved staggered fermions. We explain how to generalize the method to staggered fermions in a way which is consistent with the lattice symmetries, and introduce a new type of lattic e bilinear which transforms covariantly and avoids mixing. We derive the consequences of lattice symmetries for the propagator and vertices. We implement the method numerically for hypercubic-smeared (HYP) and asqtad valence fermion actions, using lattices with asqtad sea quarks generated by the MILC collaboration. We compare the non-perturbative results so obtained to those from perturbation theory, using both scale-independent ratios of bilinears (of which we calculate 26), and the scale-dependent bilinears themselves. Overall, we find that one-loop perturbation theory provides a successful description of the results for HYP-fermions if we allow for a truncation error of roughly the size of the square of the one-loop term (for ratios) or of size O(1) times alpha^2 (for the bilinears themselves). Perturbation theory is, however, less successful at describing the non-perturbative asqtad results.
We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. Both overlap and domain wall fermions have chiral symmetry on the lattice. The scale independent renormalization constant for t he local axial vector current is computed using a Ward Identity. The renormalization constants for the scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are obtained by using perturbative conversion ratios. The analysis uses in total six ensembles with lattice sizes 24^3x64 and 32^3x64.
We present renormalization constants of overlap quark bilinear operators on 2+1-flavor domain wall fermion configurations. This setup is being used by the chiQCD collaboration in calculations of physical quantities such as strangeness in the nucleon and the strange and charm quark masses. The scale independent renormalization constant for the axial vector current is computed using the Ward Identity. The renormalization constants for scalar, pseudoscalar and vector current are calculated in the RI-MOM scheme. Results in the MS-bar scheme are also given. The step scaling function of quark masses in the RI-MOM scheme is computed as well. The analysis uses, in total, six different ensembles of three sea quarks each on two lattices with sizes 24^3x64 and 32^3x64 at spacings a=(1.73 GeV)^{-1} and (2.28 GeV)^{-1}, respectively.
A novel method for nonperturbative renormalization of lattice operators is introduced, which lends itself to the calculation of renormalization factors for nonsinglet as well as singlet operators. The method is based on the Feynman-Hellmann relation, and involves computing two-point correlators in the presence of generalized background fields arising from introducing additional operators into the action. As a first application, and test of the method, we compute the renormalization factors of the axial vector current $A_mu$ and the scalar density $S$ for both nonsinglet and singlet operators for $N_f=3$ flavors of SLiNC fermions. For nonsinglet operators, where a meaningful comparison is possible, perfect agreement with recent calculations using standard three-point function techniques is found.
We calculate the fermion propagator and the quark-antiquark Greens functions for a complete set of ultralocal fermion bilinears, ${{cal O}_Gamma}$ [$Gamma$: scalar (S), pseudoscalar (P), vector (V), axial (A) and tensor (T)], using perturbation theor y up to one-loop and to lowest order in the lattice spacing. We employ the staggered action for fermions and the Symanzik Improved action for gluons. From our calculations we determine the renormalization functions for the quark field and for all ultralocal taste-singlet bilinear operators. The novel aspect of our calculations is that the gluon links which appear both in the fermion action and in the definition of the bilinears have been improved by applying a stout smearing procedure up to two times, iteratively. Compared to most other improved formulations of staggered fermions, the above action, as well as the HISQ action, lead to smaller taste violating effects. The renormalization functions are presented in the RI$$ scheme; the dependence on all stout parameters, as well as on the coupling constant, the number of colors, the lattice spacing, the gauge fixing parameter and the renormalization scale, is shown explicitly. We apply our results to a nonperturbative study of the magnetic susceptibility of QCD at zero and finite temperature. In particular, we evaluate the tensor coefficient, $tau$, which is relevant to the anomalous magnetic moment of the muon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا