ترغب بنشر مسار تعليمي؟ اضغط هنا

A DMRG study: Pair-density wave in spin-valley locked systems

57   0   0.0 ( 0 )
 نشر من قبل Jordan Venderley
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interest in modulated paired states, long sought since the first proposals by Fulde and Ferrell and by Larkin and Ovchinnikov, has grown recently in the context of strongly coupled superconductors under the name of pair density wave. However, there is little theoretical understanding of how such a state might arise out of strong coupling physics in simple models. Although density matrix renormalization group has been a powerful tool for exploring strong coupling modulation phenomena of spin and charge stripe in the Hubbard model and the t-J model, there has been no numerical evidence of PDW within these models using DMRG. Here we note that a system with inversion breaking, C3v point group symmetry may host a PDW-like state. Motivated by the fact that spin-valley locked band structure of hole-doped group VI transition metal dichalcogenides materializes such a setting, we use DMRG to study the superconducting tendencies in spin-valley locked systems with strong short-ranged repulsion. Remarkably we find robust evidence for a PDW and the first of such evidence within DMRG studies of a simple fermionic model.

قيم البحث

اقرأ أيضاً

We present a detailed study on the magnetic order in the undoped mother compound LaOFeAs of the recently discovered Fe-based superconductor LaO$_{1-x}$F$_x$FeAs. In particular, we present local probe measurements of the magnetic properties of LaOFeAs by means of $^{57}$Fe Mossbauer spectroscopy and muon spin relaxation in zero external field along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of 0.25(5) $mu_B$ at the iron site below T_N = 138 K, well separated from a structural phase transition at T_N = 156 K. The temperature dependence of the sublattice magnetization is determined and compared to theory. Using a four-band spin density wave model both, the size of the order parameter and the quick saturation below T_N are reproduced.
We report that spin supercurrents in magnetic superconductors and superconductor/ferromagnetic insulator bilayers can induce the Dzyaloshinskii-Moriya interaction which strength is proportional to the superconducting order parameter amplitude. This e ffect leads to the existence of inhomogeneous parity-breaking ground states combining the chiral magnetic helix and the pair density wave orders. The formation of such states takes place via the penetration of chiral domain walls at the threshold temperature below the superconducting transition. We find regimes with both the single and the re-entrant transitions into the inhomogeneous states with decreasing temperature. The predicted hybrid chiral states can be found in the existing structures with realistic parameters and materials combinations.
There has been growing speculation that a pair density wave state is a key component of the phenomenology of the pseudogap phase in the cuprates. Recently, direct evidence for such a state has emerged from an analysis of scanning tunneling microscopy data in halos around the vortex cores. By extrapolation, these vortex halos would then overlap at a magnetic field scale where quantum oscillations have been observed. Here, we show that a biaxial pair density wave state gives a unique description of the quantum oscillation data, bolstering the case that the pseudogap phase in the cuprates may be a pair density wave state.
Pair density wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair density wave ordered state, and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d-wave superconductivity, we show that the pair density wave phase exhibits neither a spin-gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La$_{1.905}$Ba$_{0.095}$CuO$_4$ [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].
We introduce and study a minimum two-orbital Hubbard model on a triangular lattice, which captures the key features of both the trilayer ABC-stacked graphene-boron nitride heterostructure and twisted transition metal dichalcogenides in a broad parame ter range. Our model comprises first- and second-nearest neighbor hoppings with valley-contrasting flux that accounts for trigonal warping in the band structure. For the strong-coupling regime with one electron per site, we derive a spin-orbital exchange Hamiltonian and find the semiclassical ground state to be a spin-valley density wave. We show that a relatively small second-neighbor exchange interaction is sufficient to stabilize the ordered state against quantum fluctuations. Effects of spin- and valley Zeeman fields as well as thermal fluctuations are also examined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا