ﻻ يوجد ملخص باللغة العربية
Spin orbit interaction can be strongly boosted when a heavy element is embedded into an inversion asymmetric crystal field. A simple structure to realize this concept in a 2D crystal contains three atomic layers, a middle one built up from heavy elements generating strong atomic spin-orbit interaction and two neighboring atomic layers with different electron negativity. BiTeI is a promising candidate for such a 2D crystal, since it contains heavy Bi layer between Te and I layers. Recently the bulk form of BiTeI attracted considerable attention due to its giant Rashba interaction, however, 2D form of this crystal was not yet created. In this work we report the first exfoliation of single layer BiTeI using a recently developed exfoliation technique on stripped gold. Our combined scanning probe studies and first principles calculations show that SL BiTeI flakes with sizes of 100 $mu$m were achieved which are stable at ambient conditions. The giant Rashba splitting and spin-momentum locking of this new member of 2D crystals open the way towards novel spintronic applications and synthetic topological heterostructures.
The collective excitation spectrum of two-dimensional (2D) antimonene is calculated beyond the low energy continuum approximation. The dynamical polarizability is computed using a 6-orbitals tight-binding model that properly accounts for the band str
We detect electroluminescence in single layer molybdenum disulphide (MoS2) field-effect transistors built on transparent glass substrates. By comparing absorption, photoluminescence, and electroluminescence of the same MoS2 layer, we find that they a
Here, we demonstrate the fabrication of single-layer MoS2 mechanical resonators. The fabricated resonators have fundamental resonance frequencies in the order of 10 MHz to 30 MHz (depending on their geometry) and their quality factor is about ~55 at
We report on the fabrication of field-effect transistors based on single and bilayers of the semiconductor WS2 and the investigation of their electronic transport properties. We find that the doping level strongly depends on the device environment an
Innovative applications based on two-dimensional solids require cost-effective fabrication processes resulting in large areas of high quality materials. Chemical vapour deposition is among the most promising methods to fulfill these requirements. How